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Abstract

Despite climate change being one of the greatest threats to
humanity, many people are still in denial or lack motiva-
tion for appropriate action. A structured source of knowl-
edge can help increase public awareness while also help-
ing crucial natural language understanding tasks such as in-
formation retrieval, question answering, and recommenda-
tion systems. We introduce KnowUREnvironment – a knowl-
edge graph for climate change and related environmental is-
sues, extracted from the scientific literature. We automatically
identify 210, 230 domain-specific entities/concepts and en-
code how these concepts are interrelated with 411, 860 RDF
triples backed up with evidence from the literature, without
using any supervision or human intervention. Human evalu-
ation shows our extracted triples are syntactically and factu-
ally correct (81.69% syntactic correctness and 75.85% preci-
sion). The proposed framework can be easily extended to any
domain that can benefit from such a knowledge graph.

1 Introduction
Both misinformation and lack of information can be harmful
when it comes to climate change. Misinformation can create
confusion about crucial socio-political issues and makes it
difficult for people to comprehend the true scenario. At the
same time, a lack of knowledge about climate change and re-
lated environmental issues makes people underestimate the
problem. Many people lack motivation for appropriate ac-
tion (Joshi and Rahman 2015); many even deny that climate
change is happening (Dunlap, McCright et al. 2011). The
scenario can be improved by equipping the general public
with accessible information. A relevant, appropriate knowl-
edge graph can help people easily comprehend facts and
connect different concepts, which eventually helps generate
new forms of knowledge. Also, knowledge graphs have been
frequently used to improve the performance and explainabil-
ity of several downstream AI applications. One important
application is automated fact-checking, where a statement is
converted to a semantic graph and later compared against
an existing knowledge graph to check for logical consis-
tency (Gallagher 2006; Vedula and Parthasarathy 2021).
Knowledge graphs are also extensively used for informa-
tion retrieval, recommender systems, and question answer-
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ing. Google uses a knowledge graph to improve understand-
ing of queries and documents, thereby improving the rel-
evance and diversity of search results (Zou 2020). Amazon
introduced a product graph (Dong 2018) that improves prod-
uct search and recommendation while consumers shop on-
line. IBM Watson (Gliozzo et al. 2013) which defeated hu-
man experts in question answering, uses several knowledge
bases as its source of information. Structured representation
of knowledge also plays a vital role in chatbots and vir-
tual assistants (e.g., Siri). Unlike deep-learning-based mod-
els lacking interpretability, knowledge graph-based models
are explainable.

Several domains have benefitted from having a domain-
specific knowledge graph. KnowEdu (Chen et al. 2018) is a
knowledge graph for education that captures mathematical
concepts and visualizes them as a graph, facilitating learn-
ing and scientific discovery. Knowledge graph for biomedi-
cal engineering is a hot topic, and has been applied for drug
discovery (Sang et al. 2018; Zeng et al. 2022) and predict-
ing disease co-morbidity (Biswas, Mitra, and Rao 2019). A
knowledge graph for climate change can reduce misinfor-
mation on social media by using automated fact-checking.
Such a knowledge graph can raise public awareness by au-
tomatically answering questions related to climate change,
and help knowledge discovery and causal inference by find-
ing relevant concepts in the knowledge graph. It can also
enable recommendation systems to suggest more sustain-
able content (e.g., showing more eco-friendly products on
e-commerce websites based on consumer preference (Islam
et al. 2022)). Unfortunately, to the best of our knowledge,
a knowledge graph focusing on climate change and related
issues is not publicly available.

In this paper, we present KnowUREnvironment – a
knowledge graph focusing on climate change and environ-
mental issues, constructed automatically in an unsupervised
manner. We use Resource Descriptor Framework (RDF)
triples to represent our knowledge graph, where each triple
consists of a subject, a predicate, and an object. Subjects
and objects are nodes of the knowledge graph, often re-
ferred to as entities/concepts. Predicates are directed edges
capturing the relationship between the subject and the ob-
ject. As shown in Figure 1, “automobile” and “emission”
are two nodes of the knowledge graph, where the “source”
predicate denote their relationship that “automobile may



Figure 1: A snapshot of KnowUREnvironment depicts how ‘automobile’ could be related to climate change and related issues.
Within a few hops, the graph can connect concepts from diverse yet relevant fields like environment, agriculture, and public
health demonstrating how powerful yet so compact a knowledge graph can be. Additionally, each of the links in the graph is
backed up by a scientific evidence.

source emission”. We enrich each RDF triple with evidence
sentences from scientific articles supporting the triple, thus
making the knowledge graph explainable and more trust-
worthy. KnowUREnvironment connects diverse yet related
concepts regarding climate change and makes it possible to
infer complex relations. For example, it is possible to verify
that “automobiles may impact the environment and public
health” by analyzing the relations presented in Figure 1.

Automatic construction of a knowledge graph is a hard
problem, and the most popular knowledge graphs are of-
ten constructed manually (e.g., Wikidata (Vrandečić and
Krötzsch 2014), Wordnet (Miller 1995)). Despite having
higher precision, the manual construction of a knowledge
graph is very costly. Researchers also tried to combine
named entity recognition (NER) and relation extraction (RE)
systems to generate RDF triples (Maynard, Bontcheva, and
Augenstein 2016; Mishra and Mittal 2021). Such systems
need models trained on the domain-specific corpus to detect
entities, requiring a significant amount of supervised data.
Another disadvantage of relying on NER systems is that
they are primarily trained to detect named entities like the
date of an event, the name of a person, an organization, or
a city. So, these systems struggle when identifying concepts
(e.g., natural disasters, global warming, etc.) RE systems of-
ten rely on relations defined by an ontology (UzZaman and
Allen 2010). Due to the unavailability of NER datasets and
an ontology for climate change, we use semantic role label-
ing (SRL), an open information extraction system, to extract
the RDF triples. From a given sentence, SRL can identify
the key verb as an event and find associated roles related to
the event. SRL is general purpose and believed to be more
domain-independent compared to NER. Thus, researchers
have adopted SRL for information extraction, specifically
for domains where appropriate NER models are not avail-
able (Roopak and Deepak 2021).

We rely on the abstracts of 152, 595 relevant, method-
ologically collected scientific articles published in several

conferences or journals as the unstructured source of knowl-
edge. Although news articles, social media, blogs, or on-
line websites can be used as alternative sources of knowl-
edge, these are often not trusted (Kiousis 2001). We pre-
fer abstracts to the entire paper because abstracts are usu-
ally publicly available and capture the essence of the whole
article. However, working with scientific literature is chal-
lenging, as the abstracts often use complex sentences and
passive voice. Due to these reasons, SRL performs poorly
on scientific texts and generates erroneous triples (Groth
et al. 2018). To improve the precision of the SRL extracted
triples, we further impose syntax verification to throw away
spurious triples. We also keep the source sentence(s) from
where a triple is extracted as evidence for the triple. RDF
triples passing syntax verification are “candidate triples”.
If an RDF triple is extracted from multiple sentences, it is
said to have multiple evidence and is promoted to a “trusted
triple”. KnowUREnvironment consists of 24, 263 trusted
triples that capture the interaction among 10, 321 unique
concepts. Despite not being a direct part of the knowledge
graph, 387, 597 candidate triples also capture potential facts
that could be trusted upon further evidence from new sci-
entific articles. As opposed to being limited to extracting
a certain set of pre-defined relations, KnowUREnvironment
consists of 4, 323 unique relations picked up automatically.
Despite the complexity of the scientific text, the knowledge
graph has 75.85% precision and 81.69% syntactic correct-
ness, as estimated by human evaluation. This suggests the
syntax verification and evidence count steps help improve
the accuracy of the extracted triples.

In summary, we make the following contributions in this
paper:
• We introduce KnowUREnvironment, a knowledge graph

for climate change and environmental issues, that can
help knowledge understanding and reasoning, as well as
crucial NLP applications for climate change. The pro-
posed method can be easily adapted for any academic



research domain.
• We integrate evidence with each triple that can increase

the explainability and trustworthiness of the knowledge
graph.

• We show that syntax verification and counting evidence
on top of semantic role labeling can help extract precise
RDF triples.

The domain-specific article abstracts and the knowledge
graph are made publicly available1, hoping for further
progress in natural language processing tasks for climate
change.

2 Method
This section describes the text corpus and data models of
KnowUREnvironment, followed by our proposed frame-
work for generating the knowledge graph from the scientific
literature on climate change and environmental science as
depicted in Figure 2. Note that, although we are building a
domain-specific knowledge graph, all the components of our
pipeline can be replicated for any other domain.

2.1 Text Corpus
We depend on a large corpus of unstructured text to build
our knowledge graph. Although many online sources offer a
huge amount of information related to climate change, their
credibility is questioned (Metzger, Flanagin, and Medders
2010; Metzger and Flanagin 2013; Abdulla et al. 2002). On
the other hand, scientific articles published in different jour-
nals and conferences are mostly peer-reviewed and more
trustworthy. We collect 1.04M sentences from 152,595 ab-
stracts of academic papers highly relevant to climate change
and associated environmental issues in two phases.

Phase 1: We use S2ORC (Lo et al. 2020) that provides
8.1M open-access papers with abstract and rich metadata
from multiple academic disciplines. Then we use a com-
plex search that tries to match the author-provided keywords
available as the metadata with multiple keyword strings most
relevant to climate change and associated environmental is-
sues to find 228,860 relevant papers. Each keyword (both
author-provided keywords and the search keywords) is nor-
malized following four simple steps: (i) tokenization2 us-
ing NLTK (Bird 2006) word tokenize, (ii) removing punc-
tuation and stop words, (iii) lemmatizing3 each token with
NLTK WordNet lemmatizer, and (iv) concatenate all the
lemmatized tokens. The search keywords are hand-picked
based on the popular issues associated with climate change:
‘climate change’, ‘sustainability’, ‘pollution’, ‘global warm-
ing’, ‘sea-level rise’, ‘climate’, ‘water stress’, ‘coastal flood-
ing’. We only consider the English abstract of papers where
the abstract is publicly available, and the author-provided
keywords match any of the search keywords in their nor-
malized form.

1https://github.com/saiful1105020/KnowUREnvironment
2Tokenization is the process of converting a piece of text (e.g.,

sentence) into smaller tokens (e.g., words).
3Lemmatization is the process of converting a word to its root

form (e.g., better → good).

Phase 2: We analyze the author-provided keywords of
the entire S2ORC corpus and our extracted domain-specific
papers to find 4,650 keywords that are most domain-
frequent. The domain frequency for a particular keyword
x, DFx = COUNT-DOMAIN(x)/COUNT-ALL(x) where
COUNT-DOMAIN(x) and COUNT-ALL(x) are the num-
ber of times x appears as an author-provided keyword in
the domain-specific papers and in all the papers of S2ORC
corpus respectively. These 4, 650 keywords (out of 394, 580
distinct author-provided keywords) covered 80% of the key-
word appearances in the domain-specific corpus. For each
of the extracted domain-specific papers in phase 1, we only
keep it in our corpus if its author-provided keywords contain
any of the 4650 domain-frequent keywords. This phase fur-
ther ensures our corpus is closely relevant to the issues we
are investigating and eventually helps to build a knowledge
graph highly relevant to the domain.

2.2 Data Model
We use RDF triples (Candan, Liu, and Suvarna 2001) data
model to represent the facts extracted from the scientific lit-
erature. Each triple (ts, tp, to) consists of a subject (ts), a
predicate (tp), and an object (to) in normalized (lemmatized)
form, where ts and to are domain-specific entities or con-
cepts and tp describes the relationship between the subject
ts and the object to. For example, the fact “Cardiovascular
disease causes death.” is represented as (“cardiovascular dis-
ease”, “cause”, “death”).

To generate the knowledge graph, we convert the RDF
triples into a labeled directed multigraph. Formally, a knowl-
edge graph KG = (V,E, s, t, lE) is a graph where V is
the set of nodes, E is the set of edges, s : E → V and
t : E → V maps each edge to their source and target nodes
respectively, and lE : E → Σ∗ maps edges to their cor-
responding labels in natural language (Σ is the alphabet of
the language). In our knowledge graph, a node represents a
subject/object of the RDF triples and the label of an edge
represents a predicate.

Figure 1 presents a visual representation of a part of the
knowledge graph. Since there may be multiple relationships
between a subject-object pair (e.g., as in Figure 1, agricul-
ture may consume water or agriculture may pollute water),
we choose a multi-edged graph instead of a simple graph
model. A subject or an object is also referred to as an en-
tity or a concept throughout the paper in an interchangeable
manner.

2.3 Knowledge Graph Construction
Our framework can be divided into three major steps: (i)
Triple Extraction step uses methods from Open Informa-
tion Extraction to generate RDF triples, which are further
validated considering syntactic perspective in the (ii) Syntax
Verification step, and finally, the triples are converted to a
directed multigraph in (iii) Evidence Counting and Graph
Construction step.

(i) Triple Extraction. An RDF triple typically encodes a
fact consisting of a subject, an object, and a predicate that
describes the relationship between the subject and object.



Figure 2: A brief overview of our methodology. Key methods are enclosed by a rectangle, while intermediate data (and their
counts) are boldfaced. The trusted triples immediately get included in the knowledge graph. The candidate triples can act like
evidence for future triples – if any future triple matches a candidate triple, it is promoted to be a trusted triple.

It is a common practice to use Named Entity Recognition
(NER) (Nadeau and Sekine 2007; Lample et al. 2016) to
identify subjects and objects from the text. However, us-
ing NER for climate change requires domain-specific train-
ing with a huge amount of human-annotated text, which is
not available. For this reason, we choose to use Open In-
formation Extraction (Etzioni et al. 2008; Stanovsky et al.
2018) techniques that are domain independent (Etzioni et al.
2008). Specifically, we use Abstract Meaning Representa-
tion (AMR) (Banarescu et al. 2013) for its availability and
easy integration.

AMR is a semantic representation language that identifies
the root verb of a sentence indicating an event and assigns
semantic roles4 for words/phrases in the sentence. In AMR,
the frame arguments are the most important semantic
roles for extracting RDF triples – more specifically, ARG0
and ARG1 representing the agent and the affected role
of an event (following OntoNotes (Pradhan et al. 2007)
convention) can be treated as the subject and object respec-
tively. The root verb is represented following PropBank
(Kingsbury and Palmer 2002) convention. For example,
given a sentence “Automobiles emit CO2.”, AMR converts
it into a semantic graph:

(e / emit-01
:ARG0 (a / automobile)
:ARG1 (s / small-molecule

:name (n / name
:op1 “CO2”)))

4https://www.isi.edu/ ulf/amr/lib/roles.html

The AMR semantic graph captures that “emit” is the key
event (predicate for the triple), ‘automobile” is the subject,
and “CO2” is the object. It also provides additional infor-
mation that “CO2” is a small molecule. We use Penman
(Goodman 2020) to parse the AMR graph and use rule-
based methods to extract the arguments accurately. The RDF
triple formed from this sentence is (“automobile”, “emit”,
“CO2”).

(ii) Syntax Verification. Although AMR provides
domain-independent semantic representation, OpenIE
systems in general, suffer when dealing with scientific
literature (Groth et al. 2018) due to the complex nature of
sentences presented in academic papers. For this reason,
AMR extracts many invalid RDF triples and may yield poor
alignment between the AMR graph and the text tokens,
leading to faulty triple generation. We use rule-based
systems to verify the syntactic consistency of the extracted
triplets in Step (i). Before applying the consistency check,
we apply some simple pre-processing techniques:

First person resolution: in academic literature, the first
person (e.g., we) typically refers to the authors/researchers,
and “this paper/article” refers to research. We create a man-
ual map to convert these types of entities to their appropri-
ate form (e.g., “we” → “researchers”, “this paper” → “re-
search”, etc.)

Removing parenthesis-enclosed text: it is common
to use an abbreviated form or an explanation right after
the original phrase using a parenthesis. We make sure
the parenthesis enclosed text is removed from the entities
of RDF triples to generate a cleaner form of the entities.



For example, “united states (u.s.)” is converted to “united
states”.

The syntax verification process consists of checking for
three types of errors in the entities as mentioned below. If
an RDF triple fails any of the error checks, it is flagged as an
inconsistent triple and removed from our knowledge graph.
Although this type of aggressive filtering may cause loss of
recall, the procedures help us extract cleaner and more pre-
cise triples. We do not check the syntax of the predicates
since they follow a standard convention (PropBank).

(a) Shared words between the subject and the object:
AMR graphs can be erroneous for complex academic sen-
tences. In many cases, AMR labels a substring of ARG0 as
ARG1 and vice versa. For example, from the sentence “The
use of total lipopolysaccharide (LPS) as a rapid biomarker
for bacterial pollution was investigated at a bathing and surf-
ing beach during the UK bathing season.” (Sattar, Jackson,
and Bradley 2014), AMR labels “biomarker” as the root verb
(predicate), “a rapid biomarker of bacterial pollution” as the
subject, and“pollution” as the object. One way to identify
this type of error is to check whether the subject and the ob-
ject share common words (except for common English stop-
words). We convert the subject and object in their lowercase
form, remove punctuation and stop-words, and then check
whether they have any common word left between them (in-
dicating a possible error).

(b) Repeated words in an entity or too long entity: for
complex arguments in AMR graph, we use AMR graph to
text generation model (gtos.generate()) to generate
the entities. However, AMR-to-text is still an active research
topic with many limitations (Manning, Wein, and Schnei-
der 2020). A common type of error we observed is repeated
word generation. Moreover, the text-generation model may
add meaningless/irrelevant text, thereby producing a subject
or object that is very long. For each subject/object in RDF
triples, we first check whether its length exceeds 50 charac-
ters. If so, we flag the triple as a possible error. Otherwise,
we convert the subject/object to lowercase, remove punctu-
ation and stopwords, and then check whether any word is
repeated to further flag the triple as a possible error.

(c) Entity is not a noun phrase: in an RDF triple, the en-
tities (subject/object) are supposed to be noun phrases while
the predicate is in verb form. We use NLTK (Bird 2006) POS
tagging accompanied with syntactic rules to flag the entities
that are not noun phrases and eventually remove inconsistent
triples. The syntactic rules are:
NNx → NN | NNP | NNPS | NNS | CD
NP → NNx
NP → DT NP
NP → JJ NP
NP → NNx NP
NP → NP IN NP
NP → NP CC NP
NP → NP , NP

Here, NNx, CD, DT, JJ, IN, and CC are NLTK
POS tags representing different types of nouns, numerical
entity, article/determiner, adjective, preposition, and coordi-

nating conjunction respectively.

(iii) Evidence Counting and Graph Construction. We
keep the sentence from where an RDF triple is extracted as
an evidence. If the same triple is extracted from multiple sen-
tences, it will have multiple evidence. We classify the triples
verified in Step (ii) into two groups: (a) candidate triples
having a single evidence and (b) trusted triples having mul-
tiple evidence. A candidate triple could be either erroneous
or less studied. As scientific literature is ever growing, the
knowledge graph construction needs to be done periodically
with the new articles published. Whenever another evidence
is found for a candidate triple in the new articles, the triple
could be promoted to a trusted triple. This type of framework
where the system is learning continuously and growing its
knowledge base is itself an interesting research area (Carl-
son et al. 2010).

After being vetted by multiple evidence, all the trusted
triples are combined to construct KnowUREnvironment, a
directed multi-graph G(V,E, s, t, lE) that represents all the
knowledge in a structured and compact graph. We first gen-
erate the list of all subjects and objects present in the trusted
RDF triples, which becomes the vertex set of the graph
(V ). For each of the trusted triple (ts, tp, to), a unique id
e ∈ E is generated that represents an edge of the graph,
and then s[e] = ts and t[e] = to maps the source and tar-
get node of edge e. Finally, e is labeled with predicate tp
(i.e., lE [e] = tp). We use Python library Networkx (Hag-
berg, Swart, and S Chult 2008) for implementation, visual-
ization, and analysis of KnowUREnvironment.

3 Evaluation and Analysis
In this section, we present a qualitative and quantitative eval-
uation of KnowUREnvironment. We also provide a prelimi-
nary analysis of the knowledge graph.

3.1 Human Evaluation
Automated evaluation of a knowledge graph is a hard prob-
lem, especially when a knowledge graph is domain-specific.
A common approach is comparing the newly constructed
knowledge graph with an existing one. However, to the best
of our knowledge, no prior knowledge graph exists that fo-
cuses on climate change and related issues. Since there is no
accessible and suitable ground truth, we had to rely on hu-
man judgment. We recruited three human annotators who
voluntarily agreed to evaluate KnowUREnvironment. All
the annotators were either undergraduate students or com-
pleted Bachelor’s degrees from a reputed Engineering uni-
versity. We use A, B, and C to identify the annotators while
respecting their privacy.

We are mainly interested in the precision and relevance of
the knowledge graph since it is impossible to assess the re-
call without ground truth. We randomly sampled 650 triples
from the knowledge graph that were evaluated by the human
annotators. Each annotator evaluated 250 triples: 50 triples
being the same for all and 200 triples being unique to each
annotator. Annotators labeled accuracy, syntactic correct-
ness, domain relevance, and ambiguity of each triple with
binary judgments. Since the annotators may lack domain



knowledge, we provided one evidence sentence for each
triple from where the triple was extracted. As further con-
text, the entire abstract containing the evidence sentence was
also provided. When evaluating each triple, we requested the
annotators to use their common sense and prior knowledge,
in addition to considering the provided evidence sentence or
abstract as needed.

We use the common 50 triples to assess inter-rater agree-
ment among the annotators in terms of Fleiss’ kappa score.
We take the majority-agreed label as the ground truth when
a triple has labels from multiple annotators. All 650 triples
were used to estimate the performance of our knowledge
graph.

Precision. Precision reflects the average accuracy of the
facts presented in the knowledge graph. If the subject and
object are well-formed (an ill-formed subject can be a non-
sense word, or a phrase without meaning, typically gener-
ated by the NLP components due to their incorrect under-
standing of the language) and the predicate captures a cor-
rect relationship between the subject and object, then the
triple is factually accurate and labeled with 1. Otherwise,
the triple is labeled with 0. Table 1 shows the precision of
our knowledge graph as evaluated by the annotators. We ob-
tain 75.85% overall precision when reported on all the 650
triples evaluated.

Annotator
Accuracy
of common
triples

Accuracy
of unique
triples

Overall

A 64% 66.5% 66%
B 74% 71.5% 72%
C 82% 88.5% 87.2%
Majority 80% – 75.85%

Table 1: The precision of KnowUREnvironment. Fleiss’
kappa score of 0.455 shows moderate agreement among the
annotators.

However, the performance estimate may be affected by
the subjective bias of human annotators. The inter-rater
agreement among the annotators is 0.455, showing moderate
agreement. Out of the 50 common triples, three annotators
fully agreed on 34 labels, while showing disagreement on 16
labels. Annotator A caused the most disagreement – label-
ing 8 triples as inaccurate while the other two labeled them
as accurate. When evaluated on the common triples where
the majority agreed label is considered to be the gold label,
the precision is 80%.

Syntactic Correctness. In addition to precision, we
also evaluate the syntactic correctness of the triples of
KnowUREnvironment. If the subject and the object repre-
sent an entity or concept (typically in a noun phrase), and
the predicate represents a relationship as a verb phrase, then
the triple is syntactically correct and labeled as 1. For exam-
ple, (“bird”, “eat”, “fish”) is syntactically correct, but (“ac-
tive”, “impact”, “climate change”) is syntactically incorrect
because “active” is not a concept/noun phrase (“activity”
would have been correct).

Annotator

Syntactic
correctness
of common
triples

Syntactic
correctness
of unique
triples

Overall

A 78% 75% 75.6%
B 80% 81% 80.4%
C 82% 90% 88.4%
Majority 78% – 81.69%

Table 2: Syntactic correctness of KnowUREnvironment.
Fleiss’ kappa score of 0.708 shows substantial agreement
among the annotators.

Figure 3: Word cloud visualization of all the concepts cap-
tured in KnowUREnvironment.

As presented in Table 2, the average syntactic correctness
of the triples is 81.69%. Unlike precision estimation, the
inter-rater agreement is substantial for syntactic correctness
evaluation, as indicated by a Fleiss’ kappa score of 0.708.

Domain Relevance. In addition to evaluating factual and
syntactic correctness, we also evaluate whether the concepts
captured by KnowUREnvironment are relevant to the do-
main. We asked the human annotators to label a subject/ob-
ject with 0 if they thought it was irrelevant to climate change
and environmental issues (otherwise with 1). On average,
66.15% of the subjects and 60% of the objects were re-
ported as domain-relevant. However, measuring domain rel-
evance requires significant domain-specific expertise which
our annotators lacked. This resulted in poor (κ = −0.07)
and slight (κ = 0.11) inter-rater agreement while measuring
the relevance of the subjects and objects respectively.

We also provide a word cloud visualization of all the con-
cepts in our knowledge graph in Figure 3. The concepts
that appear more frequently in the knowledge graph are pre-
sented in a larger font in a word cloud. Some of the most
frequent concepts like “researchers”, “pollution”, “environ-
ment”, “water”, and “drought” can be easily related to cli-
mate change and academic research.

Ambiguity. We asked the annotators to rate each triple as
understandable or ambiguous. A triple is understandable if
the annotator can interpret a single, unique meaning from the
triple without making any assumptions. Since a knowledge
graph can lose important information due to its nature of
aggressive summarization of text content, it can suffer from
a lack of clarity.



Annotator
Understan-
dability of
common triples

Understan-
dability of
unique triples

Overall

A 18% 41.5% 36.8%
B 50% 34% 37.2%
C 64% 65.5% 65.2%
Majority 44% – 46.77%

Table 3: Understandability of the triples presented in
KnowUREnvironment. Annotators agreed fairly as indi-
cated by a Fleiss’ kappa score of 0.296.

Property Value
# unique subjects 5240
# unique objects 6660
# unique predicates 4323
# triples 24263
# nodes 10321
average degree 4.70
diameter 9

Table 4: Size and basic properties of KnowUREnvironment.

46.77% of the triples in KnowUREnvironment were un-
derstandable without ambiguity, as evaluated by our human
annotators. However, we also need to consider the high sub-
jectivity of this evaluation as the inter-rater agreement is
“fair” (κ = 0.296).

3.2 Knowledge Graph Analysis
We present further analysis of KnowUREnvironment in
terms of the size of the knowledge graph and the diversity
of the predicates. We also demonstrate how having multiple
pieces of evidence affects the reliability of the triples.

Size. Table 4 presents some basic properties of the
knowledge graph. KnowUREnvironment consists of 24, 263
trusted triples, 5, 240 unique subjects and 6, 660 unique
objects. The network structure of the knowledge graph is
sparse, having an average degree (in-degree + out-degree) of
4.70. This indicates a potential weakness of the knowledge
graph in terms of missing out on existing relations (loss of
recall). However, in this study, we mainly focused on obtain-
ing accurate triples since further semi-supervised algorithms
can be developed that exploit the patterns of extracted triples
to find new triples. This strategy is often known as distant
supervision (Mintz et al. 2009).

Since scientific literature is ever-evolving, we propose a
structure that can integrate new information in the light of
previously extracted information (see Figure 2) – a core cri-
terion for never-ending learning (Mitchell et al. 2018). Al-
though the knowledge graph consists of the trusted triples,
candidate triples possess the potential to get promoted to
trusted triples if further evidence is found in the scientific
literature. We were able to extract 387, 597 candidate triples
capturing 102, 728 unique subjects, 131, 057 unique objects,
and 4, 287 unique predicates that have the potential to be in-
cluded in the knowledge graph upon further evidence from
the growing scientific literature.

Figure 4: Word cloud visualization of diverse predicates in
our knowledge graph.

Diversity of Predicates. A significant strength of our
knowledge graph is being able to capture diverse sets
of predicates, while many studies focusing on automated
knowledge graph construction are only able to extract a few
pre-defined predicates (Fabian et al. 2007; Hoffart et al.
2013). As visualized in Figure 4, KnowUREnvironment
contains 4, 323 unique predicates, focusing on causal inter-
actions among entities relevant to climate change.

Figure 5: Triples that have more evidence are more accu-
rate and understandable, although the number of triples de-
creases significantly. The triple count is presented as a per-
centage (100% = 650) to match the scale of other metrics.

Impact of Evidence Count. An evidence sentence is a
sentence of a scientific article’s abstract from where the
triple is extracted. All the triples in KnowUREnvironment
are backed up by multiple such evidence sentences. The core
idea is that a triple with single evidence might be spuri-
ous or less studied. If a triple has multiple evidence sen-



tences, we expect it to be more accurate and less suscep-
tible to systematic errors. Based on the 650 triples evalu-
ated by the human annotators, we analyze the effect of evi-
dence count on the quality of the triples. As shown in Fig-
ure 5, triples with more evidence are more precise and un-
derstandable. As opposed to 75.85% precision and 46.77%
understandability when triples have at least two evidence
sentences, the precision and understandability reach 84.81%
and 55.70% respectively when triples have at least five sup-
porting evidence sentences. Although more evidence could
indicate higher precision, the syntactic correctness remains
mostly unaffected, perhaps due to our imposed syntax veri-
fication while constructing the knowledge graph. However,
the downside of requiring more evidence to trust a triple is a
significant reduction in the number of such triples.

4 Discussion
Although a large amount of unstructured information related
to climate change is available, most automated systems can
utilize them only when presented in a structured manner. A
knowledge graph captures critical concepts and their rela-
tions in a structured and concise way, eventually helping
further knowledge synthesis. However, automatically con-
structing such a knowledge graph is an open research prob-
lem. KnowUREnvironment is our first step toward a climate
change knowledge graph and will require further iteration
to reach its maturity. In this section, we identify key chal-
lenges and limitations of the work and briefly discuss some
interesting future directions.

Limitations of the knowledge graph. Despite our best
attempts, KnowUREnvironment still contains some erro-
neous RDF triples. The open information extraction pipeline
often yields words out of English vocabulary, and the seman-
tic roles obtained by parsing AMR graphs are often mean-
ingless phrases. AMR also faces difficulty when a sentence
is in a passive voice or contains negation, thus possibly ex-
tracting inaccurate triples.

Task specific benchmark datasets. We could not ex-
plore how KnowUREnvironment can be used in downstream
NLP tasks like question answering, information retrieval,
and fact-checking due to the unavailability of task-specific
datasets. Introducing benchmark datasets for these tasks
may open the door to climate change research using NLP.

Reducing complexity of scientific text. Scientific arti-
cles are one of the most trusted source of knowledge, since
most published papers are peer-reviewed. However, when
presented as evidence, these sentences are often complex
and difficult to understand for a general audience. Also, NLP
systems such as semantic role labeling performs poorly on
complex scientific text. In the future, we plan to reduce the
complexity of the sentences as a pre-processing step.

Resolving references and abbreviations. Coreference
resolution is the task of resolving repeated reference to exist-
ing objects in the text (Sukthanker et al. 2020). Additionally,
scientific articles include abbreviations of concepts and use
them later to refer to the original concepts. Resolving refer-
ences and abbreviations as a pre-processing step could help
us extract more triples in the future.

Experimenting other SRL techniques. We used AMR
for semantic role labeling from a given sentence. Although
it is domain independent and easy to integrate with our
pipeline, AMR suffers from several limitations. AMR pro-
vides the roles as a semantic graph and aligning AMR graph
with corresponding text tokens is still an active research
area. As alignment becomes more difficult with the in-
creased complexity of scientific text, lots of erroneous triples
were generated. We had to discard 562K out of 1.03M
triples during syntax verification step – 61, 982 for having
common words between the subject and the object, 116, 728
triples where the subject or the object was too long or had
repeated words, and 439, 009 triples where the subject or the
object were not noun phrases. In the future, we will experi-
ment with other SRL techniques to improve this scenario.

Expert evaluation. For human evaluation, we employed
undergraduate students with good reading skills. However,
they are computer science majors and not experts in the area.
Although decent inter-rater agreement scores indicate the
reliability of our evaluation, being able to consult domain
experts might enable us to reach better conclusions where
specific expertise is necessary (e.g., evaluating the domain
relevance of the concepts).

Standardized ontology. A knowledge graph becomes
more valuable to the community when it is standardized.
Having a standard concept ontology on climate change
would enable researchers to share a common understanding
of structured knowledge, reuse, and analyze domain knowl-
edge (Noy, McGuinness et al. 2001). Building an ontology
for climate change and linking KnowUREnvironment to the
ontology could be rewarding for future research.

Bootstrap learning. Bootstrap learning uses already
learned information to find further information with simi-
lar patterns (Mintz et al. 2009; Mitchell et al. 2018). In this
paper, we find that RDF triples with multiple evidence sen-
tences have higher precision and thus could be trusted more.
It would be interesting to explore whether bootstrap learning
succeeds to extract more triples using the “highly trusted”
RDF triples.

5 Conclusion
In this paper, we introduce KnowUREnvironment, a knowl-
edge graph specific to climate change and associated envi-
ronmental issues. Although we had to use open information
extraction methods in the absence of domain-specific NLP
tools and datasets, our first attempt shows promising results
– 75.85% precision and 81.69% syntactic correctness, as es-
timated by human evaluation. We plan to improve the knowl-
edge graph and standardize it in the future, hoping to facili-
tate further NLP research on climate change.
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