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Abstract

Recognizing humor from a video utterance requires under-
standing the verbal and non-verbal components as well as
incorporating the appropriate context and external knowl-
edge. In this paper, we propose Humor Knowledge enriched
Transformer (HKT) that can capture the gist of a multimodal
humorous expression by integrating the preceding context
and external knowledge. We incorporate humor centric ex-
ternal knowledge into the model by capturing the ambigu-
ity and sentiment present in the language. We encode all the
language, acoustic, vision, and humor centric features sepa-
rately using Transformer based encoders, followed by a cross
attention layer to exchange information among them. Our
model achieves 77.36% and 79.41% accuracy in humorous
punchline detection on UR-FUNNY and MUStaRD datasets
– achieving a new state-of-the-art on both datasets with the
margin of 4.93% and 2.94% respectively. Furthermore, we
demonstrate that our model can capture interpretable, humor-
inducing patterns from all modalities.

1 Introduction
Ever wondered the difficulty associated for a computer al-
gorithm to recognize the punchline of a joke? People who
are funny tend to be creative as well. They experiment
with words (language), gestures (vision), prosody (acoustic)
and their (mis)alignments to build up a story while cross-
referencing multiple sources and appropriately delivering
the punchline. It is an important communication skill that
removes barriers in conversations, builds trust (Vartabedian
and Vartabedian 1993) and creates positive impact on mental
health (Lefcourt and Martin 2012). Humor has various styles
like sarcasm, exaggeration, irony, satire etc. Understanding
humor in everyday communication can enable machines to
adapt its behavior seamlessly while interacting with the hu-
mans, leading to a smooth and enriched user experience.

A humorous punchline is often built around background
context and external commonsense knowledge. Speakers de-
liberately use ambiguous and sentiment evoking words to
prime the audience to elicit a delightful laughter. They build
up expectations in the minds of their audiences and at the
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opportune moment, introduce a sudden twist, funny ges-
ture or sarcastic tone to deviate from the expectation of the
story (Ramachandran 1998). Humans can naturally process
all these information subconsciously. However, building an
algorithm that can potentially do the same requires appropri-
ate integration of all these disparate sources of information.

We propose to model humor centric features by captur-
ing the diversity of meanings and the sentiment expressed
in each word using ConceptNet (Speer, Chin, and Havasi
2017) and the NRC VAD (Mohammad 2018) lexicon re-
spectively. We also capture modality specific nuances for
language, acoustic, vision, and humor centric features sep-
arately. To represent the language modality, we fine-tune a
pre-trained Albert model (Lan et al. 2019). For other modal-
ities, we train Transformer (Vaswani et al. 2017) based en-
coders from scratch. We enrich the language modality with
humor-centric features, and then capture the cross-modality
interactions using a Bimodal Cross Attention Layer to build
a singular representation of a data instance. Since modali-
ties often carry both complementary and supplementary in-
formation, it is crucial to model them jointly to capture
their underlying interactions. During all these phases, we
model the punchline in light of the context so that we can
accurately capture the inter-dependency between them. We
call our model Humor Knowledge enriched Transformer
(HKT). The main contributions of our paper are:

• We derive humor centric features (HCF) at word level by
incorporating several humor theories and common sense
knowledge.

• We propose HKT – a transformer based model that learns
to represent a punchline in light of the background con-
text. The model has modality specific encoders for attend-
ing to each modality and a Bimodal Cross Attention Layer
to jointly represent pairs of modality groups effectively.

• The HKT model outperforms the state-of-the-art base-
lines on two different multimodal datasets of humor
(Hasan et al. 2019) and sarcasm (Castro et al. 2019) de-
tection. We perform extensive experiments to demonstrate
that humor centric features, background context and cues
from all three modalities are important to understand the
humor.



2 Background
In this section, we focus on the recent research on both text-
based and multimodal humor understanding. As our model
is largely based on Transformer (Vaswani et al. 2017) archi-
tectures, we discuss some examples on how they have been
expanded to model multiple modalities.
Text-based Humor Analysis: Early works have focused on
extracting and analyzing interpretable features based on sev-
eral humor theories of incongruity, ambiguity, superiority,
and phonetic style (Yang et al. 2015; Miller and Gurevych
2015; Mihalcea and Strapparava 2005; Liu, Zhang, and Song
2018; Zhang and Liu 2014). The discourse of sentiments in
text also plays important role in recognizing humor (Liu,
Zhang, and Song 2018). One noteworthy effort has been
taken by Yang et al. (Yang et al. 2015) to identify humor an-
chors – the most pivotal text segments in generating humor.
Recent works have started to focus on deep learning based
models for humor detection. Convolutional Neural Network
(CNN) based model (Chen and Lee 2017) is used to detect
laughter in TedTalk transcript. As a follow up, Chen et al.
(Chen and Soo 2018) designs a CNN based model with high-
way network that achieves state-of-the-art performance on
four text based humor datasets. Language model fine-tuning
is applied to classify humor in a large dataset containing
300k Russian short texts (Blinov, Bolotova-Baranova, and
Braslavski 2019). Transformer and BERT based architec-
tures are also used to study humor in text (Weller and Seppi
2019; Annamoradnejad 2020).
Multimodal Humor Analysis: Due to the availability of
large number of video content, researchers have started to
study humor in a multimodal manner. Bertero et al. (Bert-
ero and Fung 2016) introduce a dataset containing acous-
tic and text from the TV-show “Big Bang Theory” and ap-
ply Recurrent Neural Network to detect humor. UR-FUNNY
(Hasan et al. 2019) is a publicly available multimodal (tex-
tual, acoustic and visual) humor dataset that is collected
from TED-Talks. The dataset has punchline-context setup
and the authors extend Memory Fusion Network (Zadeh
et al. 2018) to incorporate context information for predicting
humorous punchline. A multimodal sarcasm dataset named
MUStARD (Castro et al. 2019) is collected from popular
sitcom TV shows. They also provide the preceding context
of each sarcastic punchline and conduct extensive evalua-
tion. MISA (Hazarika, Zimmermann, and Poria 2020) ag-
gregates modality-invariant and modality-specific represen-
tations and has been applied to predict humor in the UR-
FUNNY dataset.
Multimodal Analysis: Learning the joint representation of
multimodal data has been an active research area in NLP
community (Wang et al. 2019; Pham et al. 2019; Hazarika
et al. 2018; Poria et al. 2017; Zadeh et al. 2017; Liang et al.
2018; Tsai et al. 2018; Liu et al. 2018; Zadeh et al. 2018; Is-
lam and Iqbal 2021). Recently, Transformer (Vaswani et al.
2017) based models have gained success in modeling mul-
tiple modalities. Sun et al. (Sun et al. 2019) learn joint rep-
resentation of video segments and their accompanying texts
from a cooking video dataset. Multimodal Transformer (Tsai
et al. 2019) uses a set of transformer encoders to capture
both unimodal and cross modal interactions. Similarly, Tan

and Bansal (Tan and Bansal 2019) learn joint representation
of text and visual through a Cross-modality Encoder. Rah-
man et al. (Rahman et al. 2020) integrate acoustic and visual
information in the pre-trained transformers like BERT (De-
vlin et al. 2018) and XLNet (Yang et al. 2019). Word rep-
resentations of the language models are shifted conditioned
on nonverbal features by fine-tuning.

3 Humor Centric Features Extraction
We extract humor-centric features based on the ambiguity
and superiority theories.

3.1 Ambiguity
Ambiguity occurs when a sentence expresses multiple
meanings simultaneously. It can be achieved through craft-
ing a sentence with ambiguous words. Such sentences can
have both serious and funny interpretations, generating hu-
mor in that process (Charina 2017). One such example is:
Did you hear about the guy whose whole left side was cut
off? He’s all right now. In this example, the word ‘right’ can
have two primary meanings: ‘good’ and ‘direction’. Based
on the meaning we perceive to be true, we will interpret
the sentence very differently, and may experience ambigu-
ity driven humor.

Yang et al. (Yang et al. 2015) extracted the count of senses
(meanings) of each word from WordNet (Fellbaum 2012)
and used it as a feature for capturing ambiguity. Although
the count of senses is a good starting point, we believe that
finding the most frequently used senses of the words and the
diversity among the senses are important to capture the am-
biguity in that sentence. To that end, we use ConceptNet (Liu
and Singh 2004) – a large-scale semantic structure that ex-
presses the relationship between words and phrases through
graphs. The nodes in the graph denote concepts (words or
phrases) and the weighted labeled edges denote how the
words are related and the confidence score of the relation.
For each word, we extract neighbouring concepts after fil-
tering out the edges with confidence score less than 1. For
example, top weighted neighbours of the word ‘right’ are:
turn, direction, correct, good, proper, etc.

For each word w in our dataset, we extract Ns
senses (/concepts) and their corresponding Glove embed-
dings (Pennington, Socher, and Manning 2014). The Glove
embeddings provide a 300 dimensional vector for each
word: similar words will have similar vector representations.
The matrix of all the senses of a word w is S ∈ RNs×300;
where Ns is the number of senses/concepts. We take the
summation of cosine distances of all pair of senses as a met-
ric of ambiguity. Since cosine distance between two iden-
tical distance is zero, the metric will have higher value for
more ambiguous words.

3.2 Sentiment
According to the superiority theory (Gruner 2017), hu-
morous text often contains sentiment information and the
transition of sentiments can be valuable in humor recog-
nition (Liu, Zhang, and Song 2018). We extract valence
(negative-positive), arousal (calm-excited), and dominance
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Figure 1: Humor Knowledge enriched Transformer (HKT)

(submissive-dominant) scores of each word from the NRC
VAD dictionary (Mohammad 2018). This dictionary pro-
vides the above mentioned scores (in the range [0,1]) for
20k English words.

We denote the ambiguity (sec 3.1), valence, arousal and
dominance scores extracted for each word as HCF - Humor
Centric Features (h) to be used as an additional information.

4 Humor Knowledge Enriched Transformer
(HKT) Model

In this section, we outline the Humor Knowledge enriched
Transformer (HKT) model (Figure 1). First, a set of en-
coders create unimodal representations of punchline condi-
tioned on context. Then, humor centric feature enriched lan-
guage and non-verbal embedding go through Bimodal Cross
Attention layers (Figure 2) to create multimodal fusion.

4.1 Task Definition
If our dataset has N data-points, we can represent the i-th
data as {Xi = (Ci, P i), Y i} where i ∈ [1, ...N ]. Here, Ci,
P i and Y i are the context, punchline and the label (Humor/
not Humor) associated with i-th datapoint respectively. Both
the punchline and context sequences consist of four modali-
ties: language (l), acoustic (a), vision (v) and humor centric
features (h). We align the acoustic and visual features with
their corresponding tokens in the language modality; there-
fore, the language, acoustic and vision sequences have the
same length.

The total length of the i-th datapoint is τ i = τ ip + τ ic ,
where τ ip= punchline sequence length and τ ic= context se-
quence length. Since τ i will have different values for differ-
ent i values, we can truncate context or pad them with zero

(to the right) to make sure that all datapoints have a fixed
length τ . We represent the punchline of i-th datapoint as
P i = (P il , P

i
a, P

i
v, P

i
h); where P il ∈ R

τ i
p×dl , P ia ∈ Rτ

i
p×da ,

P iv ∈ Rτ
i
p×dv and P ih ∈ R

τ i
p×dh . Here, dl, da, dv and dh are

the dimensions of the language, acoustic, visual and HCF
features respectively. Similarly, the context of i-th datapoint
can be represented as Ci = (Cil , C

i
a, C

i
v, C

i
h); where Cil ∈

Rτ
i
c×dl , Cia ∈ Rτ

i
c×da , Cv ∈ Rτ

i
c×dv and Ch ∈ Rτ

i
c×dh .

Given a context (Ci) and punchline (P i), our task is
to predict whether the label (Y i) is humorous or not. For
achieving that goal, we will maximize the following func-
tion φ:

φ =

N∏
i=1

p(Y i|P i, Ci; θ) (1)

In Eq. 1, φ represents the product of the conditional proba-
bilities of determining the correct label given the punchline
and context; θ denotes the model parameters that we want to
train.

4.2 Unimodal Representation Learning
We fine-tune a pre-trained Albert (Lan et al. 2019) en-
coder for representing the language (l) only. For the other
three modalities, we train a modified transformer encoder
(Vaswani et al. 2017).

Language Representation: To convert the text token
into vectors, we feed both the context and punchline to-
gether to Albert. We represent our language modality as:
Xl = [CLS]Cl[SEP]Pl ; where Xl ∈ Rτ×dl , Cl=tokens
of context, Pl=tokens of punchline and τ= total length of
the token sequence. In essence, the [CLS] token appended at
the beginning will be used by the Albert encoder to create



a vector representing the whole input Xl, and the [SEP] to-
ken separates out the two sources of information – context
and punchline – so that the punchline is modelled in light
of the context. This representation is same as the one used
in (Devlin et al. 2018) to model question-answering task.
Albert encoder output the unimodal language representation
Ul = ALBERT(Xl); where Ul ∈ Rτ×d

u
l and dul = output

dimension of the Albert encoder.
Acoustic, Visual and Humor Centric Feature Repre-

sentations: Transformer encoders are used to learn the uni-
modal representations of acoustic (a), vision (v) and HCF
(h).

Transformer Encoder Layer contains a Multihead self-
attention sub-layer and a Feed Forward (FF) sub-layer. The
self-attention layers calculate the weighted summation of
values; where the weights are computed from the scale dot
product of query and key vector.

Attention(Q,K, V ) = softmax(
QKT

√
dh

)V (2)

Multiple self-attention layers operating in parallel, hence the
name Multi-Head Self Attention – each potentially focusing
on complementary aspects of the input. Following the con-
vention of (Vaswani et al. 2017), we add layer normalization
and residual connections after each sub-layers. Na, Nv and
Nh is the number of encoder layers are used in the Acoustic,
Visual and HCF encoder respectively. To align the input rep-
resentation with language, we create an input representation
Xm for the modality m: Xm = [PAD]Cm[SEP]Pm.
m = {a, v, h} represents the acoustic, visual and HCF

respectively; where Xm ∈ Rτ×dm and dm = the dimen-
sion of features in the corresponding modalities. [PAD] is
used as a placeholder token mimicking the [CLS] token used
for language, and [SEP] token is used to separate the con-
text tokens from the punchline tokens. We send each input
sequence Xm to the modality-specific encoder to obtain the
unimodal representation Um = TransformerEncoder(Xm).
In the above equation, Um ∈ Rτ×d

u
m and dum = output di-

mension of the transformer encoder in the corresponding
modality m ∈ [a, v, h].

Grouping together modality information: As discussed
in the preceding sections, Albert and the Transformer En-
coders give the unimodal representations of language (Ul),
acoustic (Ua), vision (Uv) and HCF (Uh). To infuse the lan-
guage information with the knowledge gained from humor
centric features, we create an HCF-Enriched language rep-
resentation Ul,h = Ul ⊕ Uh ; ⊕ represents concatenation
and Ul,h ∈ Rτ×(dul +d

u
h). Similarly, we combine acoustic

and visual representations to create a non-verbal embedding
Ua,v = Ua ⊕ Uv where Ua,v ∈ Rτ×(dua+d

u
v ).

4.3 Bimodal Cross Attention Layer
A Bimodal Cross Attention Layer is added to learn the
joint representation of Ul,h and Ua,v (Figure 1). We mod-
ified the original transformer encoder layer (Vaswani et al.
2017) to fuse the information across two modalities (De-
tailed architecture is shown in Figure 2). For the sake of
brevity, the rest of this section will assume that we instan-
tiate this layer with two vectors (Um1,Um2): representing
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modalities m1 and m2. However, these vectors can repre-
sent a group of modalities as well. For example, we assume
that Um1 = Ul,h and Um2 = Ua,v in the model presented in
Figure 2.

To exchange information between the two vectors
(Um1,Um2), we create two sets of queries (Qm1, Qm2), keys
(Km1,Km2) and values (Vm1, Vm2) matrices following the
convention of standard transformer (Vaswani et al. 2017).
Each set is be attached to one of the two Multihead Cross
Attention sub-layers. The sub-layers exchange the key and
value matrices to compute the cross-aligned heads using the
Equation 2. In essence, each sub-layer will create a vec-
tor representation while absorbing information from its pair.
Similar approach of accomplishing cross-alignment among
modalities has been studied in other language-vision tasks
as well (Tan and Bansal 2019; Lu et al. 2019).

Although each of the outputs of the two Multihead Cross
Attentions, (Ũm1, Ũm2) contain information about the other,
we need to facilitate further exchange of information to build
a more contextual and unified vector representation. For
achieving that goal, we concatenated and passed them to a
Multihead Self Attention followed by a Feed Forward sub-
layer. Multihead Self Attention updates the representation of
each element of input in light of the information gained from
all the other elements and help us create the final joint repre-
sentation Zm1,m2. We add layer normalization and residual
connections after each sub-layers as well.

4.4 Multimodal Fusion
The Bimodal Cross Attention Layer is used to cre-
ate a fusion vector of humor-centric-feature enriched
language embeddings (Ul,h) and non-verbal embeddings
(Ua,v) shown in Figure 1. That fusion vector is: Z =



BimodalCrossAttention(Ul,h, Ua,v). In order to create a sin-
gle vector representation unifying all components of our
model, we create five vectors:[el, ea, ev, eh, ez]; el is the
vector corresponding to the [CLS] token in Albert model,
and the rest of them are created by applying Max-pooling
layers on [Ua, Uv, Uh, Z] respectively. Max-pooling gives us
a computationally efficient method of extracting the most
salient features across the time dimension and yields a fixed
dimensional vector. Finally, we concatenate all these repre-
sentations to get the final embedding o = el ⊕ ea ⊕ ev ⊕
eh ⊕ ez; o ∈ Rdo . The output probability is computed as
p = softmax(oW + b), where W ∈ Rdo×l and b ∈ Rl de-
note model parameters and l denotes the number of classes.

5 Experiments
In this section, we discuss our experimental methodology:
datasets we use, features we extract and baselines we com-
pare with.

5.1 Datasets
We work with datasets that have language, acoustic and
vision modalities and the preceding context of the punch-
line with the humor(/sarcastic) label. Only UR-FUNNY and
MUStaRD fulfill these criteria.

UR-FUNNY: The UR-FUNNY (Hasan et al. 2019) is col-
lected from TED talk videos and therefore, has language,
acoustic and visual modalities and the context preceding
the punchline. Punchline is extracted using the ‘laughter’
markup – indicating when audience laughed during the talk
– in the transcripts. The sentences preceding the punchline
form the context. Negative samples are also extracted in sim-
ilar manner where target punchline utterances are not fol-
lowed by ‘laughter’. In total, the dataset consists of 5K hu-
mor and 5K non-humor instances (from 1741 distinct speak-
ers). Version 2 of the UR-FUNNY dataset is used for all ex-
periments.

MUStARD: Multimodal Sarcasm Detection Dataset
(MUStARD) (Castro et al. 2019) is compiled from popular
TV shows like Friends, The Big Bang Theory, The golden
Girls and Sarcasmaholics. It provides 690 video segments
that are manually annotated with sarcastic/non-sarcastic la-
bels. They provide target punchline utterance and the asso-
ciated historical dialogues as context.

5.2 Feature Extraction
The following standard features are used by the baseline
models and our HKT model.
Language: Albert (Lan et al. 2019) language model is fine
tuned to learn the contextual word representations. P2FA
forced alignment model (Yuan and Liberman 2008) is used
to extract the timing of all the words used in punchline and
context. Once we extract the acoustic and visual features
for the whole video, we use each word’s timing to slice off
the relevant range of acoustic and visual features for that
word. Those two feature arrays are averaged out across the
time dimension separately and in the end, we get the acous-
tic and visual feature vectors for each word (Chen et al.
2017). We extract ‘senses’ of word from ConceptNet and

use GloVe embeddings (Pennington, Socher, and Manning
2014) to measure ambiguity.
Acoustic: We use COVAREP (Degottex et al. 2014) to
extract low-level acoustic features. This feature set in-
cludes Melcepstral coefficients, fundamental frequency,
voiced/unvoiced segments , normalized amplitude quotient,
quasi open quotient (Kane and Gobl 2013), glottal source
parameters (Drugman et al. 2012), harmonic model and
phase distortions, the formants etc.
Visual: OpenFace 2 (Baltrusaitis et al. 2018) is used to ex-
tract facial Action Units (AU) features and Rigid and non-
rigid facial shape parameters. Facial action unit features are
based on the Facial Action Coding System (FACS) (Ekman
1997) which are widely used in human affect analysis.

5.3 Baseline Models
The performance of our HKT model is compared with the
following baselines:

Contextual Memory Fusion Network (C-MFN) (Hasan
et al. 2019) was used to detect humor punchlines in UR-
FUNNY dataset. They extended the Memory Fusion Net-
work (Zadeh et al. 2018) by incorporating the information
from the preceding context.

Support Vector Machines (SVM) was used as the base-
line model for MUStARD dataset (Castro et al. 2019). They
used ResNet (He et al. 2016) and Librosa (McFee et al.
2018) to extract visual and acoustic features respectively
and did not align all three modalities. While we have at-
tempted to extract the acoustic and visual features using the
Covarep and Openface and align the modalities, we lost 14
samples. To present a fair comparison, we extract all the fea-
tures (mentioned in 5.2) and retrain an SVM model on the
train, dev, and test sets that we define for MUStARD.

MISA (Hazarika, Zimmermann, and Poria 2020)
achieved SOTA performance on the UR-FUNNY dataset
by projecting their data to a modality invariant and three
modality-specific spaces and then aggregating all those
projections. They used BERT language encoder and worked
with punchline only. For fair comparison, we rerun MISA
by concatenating both punchline and context. As our model
use ALBERT language encoder, so we run a variant of
MISA with ALBERT. We experiment with these variants of
MISA on both UR-FUNNY and MUStARD datasets.

MAG-Transformer (Rahman et al. 2020) introduced
Multimodal Adaption Gate (MAG) to fuse acoustic and vi-
sual information in pretrained language transformers. Dur-
ing fine tuning, the MAG shifts the internal representa-
tions of BERT and XLNet in the presence of the visual
and acoustic modalities. Both the MAG-BERT and MAG-
XLNet achieved SOTA performance in CMU-MOSI and
CMU-MOSEI datasets of multimodal sentiment analysis.
Moreover, the MAG-XLNet achieved human level perfor-
mance on the CMU-MOSI dataset and outperformed all the
state of the art multimodal fusion models. We apply the
MAG-XLNet on both UR-FUNNY and MUStARD datasets
due to it’s superior performance. For fair comparison with
our model, we also run a variant of MAG-Transformer
where we use ALBERT pretrained transformer.



Multimodal Models UR-FUNNY MUStARD
C-MFN (Glove) 65.23 -
C-MFN (Albert) 61.72 -
SVM - 71.6
MISA (BERT) [punchline only] 70.61 -
MISA (BERT) 69.62 66.18
MISA (ALBERT) 69.82 66.18
MAG-ALBERT 67.20 69.12
MAG-XLNet 72.43 76.47
HKT 77.36 79.41
∆ SOTA 4.93 ↑ 2.94 ↑

Table 1: Performances (binary accuracy) of multimodal
models on the UR-FUNNY & MUStARD datasets.

5.4 Experimental Design
Adam optimizer and Linear scheduler are used to train
the HKT model. We use different learning rates for lan-
guage, acoustic, visual and HCF encoders. The search space
of the learning rates is {0.001, 0.0001, 0.00001, 0.000001}.
Binary cross entropy is used as loss function. We experiment
with {1, 2, 3, 4, 5, 6, 7, 8} encoder layers and {1, 2, 3, 4, 6}
cross attention heads for the language, acoustic, visual and
HCF encoders. For the Bimodal Cross Attention we exper-
iment {1, 2} layers and {1, 2, 4} attention heads. Dropout
[0.05− 0.30] (uniform distribution) is used to regularize the
model. For other baseline models, we first experiment with
best configurations that were presented in their respective
papers. In addition, we run experiments with extensive hyper
parameter search for fair comparison. We provide details of
the best model configurations and hyper-parameters search
spaces in the supplementary material 1. In our framework, it
is possible to reproduce the same experiment on K80 gpu for
specific hyper-parameters and seed. Both the UR-FUNNY
and MUStARD have balanced test set. Hence, we use Bi-
nary Accuracy as our performance metric.

6 Results and Discussions
In this section, we compare the performance of HKT model
with the baselines, conduct ablation studies to show the im-
portance of including multiple modalities and HCF features,
and demonstrate our model’s capability of capturing multi-
modal humor anchors.

6.1 Comparison with Baselines
Table 1 shows that the HKT model outperforms the base-
lines significantly on the UR-FUNNY dataset (4.93% in-
crease) and MUStARD dataset (2.94% increase). The orig-
inal C-MFN model was trained with Glove embeddings on
UR-FUNNY dataset. We re-train the C-MFN model with the
embeddings extracted from the pre-trained Albert model to
ensure a fair comparison. However, it performed poorly on
humorous punchline detection in UR-FUNNY. The MISA
baseline model only used punchline of UR-FUNNY to
predict humor (Hazarika, Zimmermann, and Poria 2020).

1https://github.com/matalvepu/HKT

Models UR-FUNNY MUStARD
HKT 77.36 79.41

- acoustic (a) 74.14 76.47
- visual (v) 76.06 76.47
- HCF (h) 76.36 75.00

language only (l) 73.54 73.53
acoustic only (a) 64.99 73.53
visual only (v) 55.84 64.71
HCF only (h) 56.54 60.29

Table 2: Role of modalities in our HKT model. Here ‘-’ de-
notes removal of the corresponding feature set. Binary accu-
racy is reported here as performance.

Therefore, we train a variation of our HKT model by remov-
ing the context and achieved 71.33% accuracy (0.72% in-
crease compare to MISA). However, our full model achieves
77.36% accuracy on UR-FUNNY that indicates the impor-
tance of context in detecting humorous punchline.

MISA (BERT) and MISA (ALBERT) that are trained on
the full sequence of context and punchline do not achieve
better performance. They perform worse than the punchline
only MISA (BERT) model in UR-FUNNY dataset. The pos-
sible explanation is that MISA encodes the full temporal un-
miodal sequence into a single latent space and reconstructs
the unimodal embeddings from the latent space. So, infor-
mation might get lost during encoding the long sequence.
The authors also worked with punchline only in their experi-
ments for the UR-FUNNY dataset. Similarly, MISA variants
perform worse than the SVM baseline in MUStARD dataset.
This generative approach does not work well on the small
dataset like MUStARD. In all of theses cases, we exper-
iment with their reported best model configurations. Then
additional extensive hyper-parameter search is done for fair
comparison. However, MISA variants do not achieve rea-
sonable performance on the long sequence of punchline fol-
lowed by a context.

MAG-XLNet is the current state-of-the-art model for
multimodal sentiment analysis in CMU-MOSI and CMU-
MOSEI datasets. In here, it also achieves competitive perfor-
mance compare to other baselines in both datasets. However,
MAG-ALBERT does not achieve similar performance. Our
HKT model achieves better result than MAG-XLNet and
shows the importance of this kind of architecture for mod-
eling multimodal humorous punchline in the light of back-
ground context and humor centric features.

6.2 Role of Different Components
Role of Modalities: we retrain our model by removing a
set of modalities (one at a time) and thus show its impor-
tance in Table 2. Language manifests itself as the dominant
modality in the UR-FUNNY dataset. On the other hand, both
language and acoustic shows highest importance in MUS-
tARD dataset. Although removing acoustic and visual fea-
tures drops the performance for both datasets, the drop is
very negligible for visual in the UR-FUNNY dataset. Since
the cameras move a lot and seldom focuses on the faces
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Figure 3: Correlation among the prediction outputs (dev &
test set) of unimodal models.

of the speaker in TED-Talk recordings, the visual features
tend to carry a lot of noises (Hasan et al. 2019). We find that
70% of the visual vectors are zero in UR-FUNNY dataset.
Removing HCF is also consequential, especially for the
MUStARD dataset. In our early exploration, we have exper-
imented with transformer-based language encoder trained
on Glove embeddings. ALBERT language encoder achieves
better results (8% increase on UR-FUNNY), which is why
we use the ALBERT encoder in our HKT model.

We try to understand how much modality-specific infor-
mation our unimodal encoders can capture. Each encoders
are trained separately with its modality-specific information
only (while detaching it from other parts of the model). Next,
we take the outputs from each of those of the unimodal en-
coders to predict humor/sarcasm (Table 2). These results are
in accordance with the results mentioned in the preceding
paragraph. The acoustic modality alone works surprisingly
well for MUStARD dataset: we observe that actors exag-
gerate their voice to deliver sarcastic punchlines in sitcom
shows, which can explain the superior performance of the
acoustic modality. HCF features also capture some mean-
ingful insight from the MUStARD dataset. Figure 3 shows
how much complementary information is present in each
modality with respect to the other modalities. We extract the
predictions from each unimodal encoders and calculate the
Pearson correlation among them. The correlation values are
low, which indicates that each modality covers different as-
pects of information. The HKT model brings all this comple-
mentary information together, which can explain its higher
accuracy when compared to previous models.

Bimodal Cross Attention Layers: We experiment with
different numbers of Bimodal Cross Attention Layers. How-
ever, in both dataset we observe that increasing the num-
ber layers do not improve performance (highest 76.47%
accuracy on MUStARD and highest 75.75% accuracy on
UR-FUNNY). Specifically, in MUStARD dataset the model
overfits very quickly due to high number of parameters com-
pare to the small amount of data.

HCF: Integrated gradients technique (Sundararajan, Taly,
and Yan 2017) is used to analyze the relative importance
of the humor centric features in the model’s inference. The
model puts more weight (1.88 times higher) on the “Senti-
ment” features compared to the “Ambiguity”. The test and
dev split of the MUStARD dataset are used to compare.

 Anyway  if  you don’t feel  like    
 being  alone  tonight s   

 Joey  and Chandler  are coming over  
 to  help  put  together  my  new s  

 furniture  sd  

 Yes,  and we  are very  excited s  
 about  it d
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VISUAL 
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Anyway if you don’t  feel  like 
being  alone  tonight

Joey and Chandler are coming over to 
help put together my new  furniture s

Yes, we are very  excited  about it

Raised eyebrow Displeased facial expression Exaggerated expression Not excited

Stress on Tone

Start speaking in 
sarcastic tone

High Valence and High Arousal
Low Arousal and Low dominance

Low Attribution High Attribution
0.0 0.015

Figure 4: Multimodal Humor Anchors extracted by the HKT
model. Integrated gradients (Sundararajan, Taly, and Yan
2017) method is used to decipher how each input token
(across modalities) contributed to the model’s final decision.
Since acoustic, visual and HCF features are aligned on word
level, we color coded the words to indicate the timestamps
where model put attention on the corresponding modalities.
For example, model puts highest attention to the visual fea-
tures corresponding to the time-periods when the words ‘be-
ing’ and ‘yes’ were spoken. (Best view in color and zoomed)

6.3 Multimodal Humor Anchors
Humor anchors are the input tokens that play a pivotal role
in creating humor (Yang et al. 2015). We want to see if our
HKT model can identify humor anchors present in other
modalities than text. Figure 4 shows the visualization of an
example from MUStARD dataset (video id: 2 524). We use
integrated gradients method (Sundararajan, Taly, and Yan
2017) to find the candidate tokens which have high impact in
the model’s decision making process. As the acoustic and vi-
sual modalities are aligned with text in word level, we know
the timestamps where each feature resides. We get the at-
tribution value (measure of impact) for each feature vector.
Then we manually go through the video to understand how
those high-attribution achieving features are related to hu-
mor. We have found that the model puts high attribution to
meaningful patterns like eye brow raise, exaggerated facial
expressions, stress on tone, high valence and arousal.

7 Conclusion
In this paper, we introduce HKT – a humor knowledge en-
riched multimodal model that can effectively learn the multi-
modal representation of a punchline conditioned on the con-
text story. Our experiments show significant improvements
in the task of humorous/sarcastic punchline detection on two
publicly available datasets: UR-FUNNY and MUStARD.
We demonstrate that context, humor centric features based
on humor theories and cues from all three modalities are im-
portant for recognizing the humorous punchline. Addition-
ally, we demonstrate that our model is able to find meaning-
ful humor anchors across the modalities
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Castro, S.; Hazarika, D.; Pérez-Rosas, V.; Zimmermann, R.;
Mihalcea, R.; and Poria, S. 2019. Towards Multimodal Sar-
casm Detection (An Obviously Perfect Paper). arXiv preprint
arXiv:1906.01815 .

Charina, I. N. 2017. Lexical and Syntactic Ambiguity in Humor.
International Journal of Humanity Studies (IJHS) 1(1): 120–131.

Chen, L.; and Lee, C. 2017. Predicting Audience’s Laughter Dur-
ing Presentations Using Convolutional Neural Network. In Pro-
ceedings of the 12th Workshop on Innovative Use of NLP for Build-
ing Educational Applications, 86–90.

Chen, M.; Wang, S.; Liang, P. P.; Baltrušaitis, T.; Zadeh, A.; and
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