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1 INTRODUCTION

E ffective patient-physician communication is fundamen-
tal to a patient’s right to be fully informed and actively

involved in health decision making. Good communication
skills facilitate physicians’ understanding of patients’ symp-
toms, concerns, and treatment wishes [1]. Effective commu-
nication in the clinical setting has further been correlated
with better patient health outcomes [2], [3], [4], [5]. Alterna-
tively, a lack of effective communication has been associated
with patients underestimating their disease severity [6] and
overestimating their prognosis [7]. Together, these findings
suggest that training the physicians on the fundamentals of
how to communicate with patients, including taking turns,
asking questions, showing empathy, and being positive is
a very important part of medical education. In addition to
in-person training, the state of the art medical education
involves using trained actors to play the role of standard-
ized patients who provide medical students feedback [8],
[9], [10], [11], [12], [13], [14]. These techniques have the
limitations of being expensive in terms of time and money
as well as being prone to individual variation. Medical
schools in the developing world may not even have the
resources to provide such training [15], [16]. There exists
a dire need to improve patient-physician communication
training that is not only evidence-based and standardized,
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but is also rapidly customizable, cost-effective, and ready to
be deployed online across geographical boundaries.

The 2020 pandemic saw a dramatic increase in online
interactions. In-person communications were aggressively
replaced with virtual interactions across a wide spectrum
of domains from education to healthcare. Even the most
technologically inexperienced and averse, from preschool
students to senior citizens, were forced to learn and find
the means to participate online. The medical education
system also felt pressure to accelerate physician training.
The loss of in-person interaction, may be likely to exacerbate
the current deficiencies in patient-physician communication.
This problem is further complicated by the ever decreasing
amount of time physicians have to spend with their pa-
tients. Additionally, with increasing medical technologies to
learn and ever more specialized fields of medical training,
physicians have less and less time for training in patient-
physician communication.

In this paper, we focus on patient-physician communi-
cation in cancer care. Communication between oncologists
and patients is especially important due to the complexity
and the emotions involved in discussing the patient’s life
expectancy. In addition, the oncologists need to explain
the severity of cancer, the multiple treatment options avail-
able, and the correlates of patient involvement in complex
decision-making [17], while expressing appropriate emotion
and empathy. Despite decades of communication training
and research, studies have shown that over 60% of late stage
cancer patients do not understand their prognosis [12]. It
is thus clear that identifying modifiable correlates of effec-
tive communication is essential for developing physician
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communication training. We present a multi-stage research
project leading to the development of an online virtual
patient for physicians’ communication training. We begin
with the development of automatic detection methods of
two behavioral paradigms, lecturing and positive language
usage patterns (the sentiment trajectory of conversation). We
have used a data set that consists of 382 transcripts of con-
versations between late stage (stage 3 or 4) cancer patients
(Male=172, Female=210) and their physicians (Male=25, Fe-
male=13) and a measure of each patient’s prognosis under-
standing [7]. Computational linguistic analysis of the con-
versation transcripts enabled us to develop automatic met-
rics for evaluating the degree of lecturing-like structure in a
conversation. In addition, we identify that most physicians
tend to use one of three styles of varying their sentiment
over time (i.e., there are three styles of sentiment trajectory).
We show that these metrics have a significant association
with patients’ level of prognosis understanding. We then
developed an online virtual agent-based communication
skills development system, SOPHIE (Standardized Online
Patient for Healthcare Interaction Education), which gives
users feedback on lecturing and positive language usage.
SOPHIE also provides feedback on the user’s speech rate
and number of questions asked. SOPHIE presents herself as
a late stage cancer patient and designed using the physician
communication training protocol – SPIKES [18]. Fig. 1 shows
a physician practicing communication skills with SOPHIE
in his home. SOPHIE allows users to practice in their own
private environment.

Prior interventions with physicians and patients have
promoted discussions about prognosis but have not im-
proved prognostic understanding. We undertook the first
set of analyses to discover patterns of communication that
had not been previously described that might affect the
outcome of prognosis conversations, with the intention of
applying findings from those analyses into the design of
SOPHIE. Since the target outcome was to improve the
prognosis understanding, the feedback was designed in
such a way that has a direct association with the prognosis
understanding. This is why we developed SOPHIE utilizing
an existing data set. We first identify the affective compo-
nents in the dataset on which we can give feedback such
as sentiment and lecturing style of communication. We then
validate it with statistical analysis. Finally, we implement
the feedback of SOPHIE using the knowledge we have from
our analysis.

Our contributions include:

• The development of an automated metric for mea-
suring the lecturing-like structure of a patient-
physician conversation transcript,

• The identification that most doctors use one of three
styles of sentiment trajectory (i.e., pattern of modify-
ing their positive language usage over the course of
a patient-physician conversation).

• Demonstration that the degree of lecturing structure
is significantly associated with the level of prognosis
misunderstanding.

• Finding that a certain sentiment trajectory style (one
which involves delivering technical information and
ending with positive language) is associated with

Fig. 1: A physician practicing communication skills with
SOPHIE virtual patient.

better prognosis understanding.
• Presentation of an iterative participatory design pro-

cess, and an initial end-user evaluation with eight
practicing physicians, of an online virtual patient
(i.e., SOPHIE) for feedback-based practice of critical
patient-physician conversations.

In this paper, in collaboration with oncologists and med-
ical educators from University of Rochester Medical Center
(URMC), we provide early ideas on how inspiration from af-
fective computing and online interactions could potentially
transform current medical education.

2 RELATED WORK

This work encompasses on several interconnected areas
including, affect and sentiment analysis, prognosis un-
derstanding, patient-physician communication, virtual pa-
tients, and communication skills development programs
[19]. Here we highlight the related research in these inter-
secting domains.

Affective computing and sentiment analysis has been
used by researchers for health-care monitoring and disease
symptoms detection. Zucco et al. [20] proposed sentiment
and affective computing based architecture for depression
detection. In subsequent work the authors [21] analyzed
sentiment to detect the dropout of patients in tele-homecare
service. The association of positive patient outcomes with
physician affect has received limited experimental examina-
tion and differing conclusions have been reached in regard
to the patient health outcomes. Hall et al. [22] found that
the negative affects of the physicians such as showing anger
and anxiety are correlated with patients’ contentment. In
contrast, Verheul et al. [23] in a study with 30 female patients
found that warm and empathetic communication helped
decrease the state of anxiety among patients. Similarly, Di
Blasi, et al. [24] found in their review of 25 randomized con-
trolled trials on affective physician communication, show
inconsistency regarding emotional and cognitive care. Sen et
al. [25] also found a lack of association of overall conversa-
tional positive sentiment with patient ratings of their oncol-
ogists’ communication skills. Prior studies have also studied
the association of physician affect on patient information
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recall, prognosis understanding, and better health outcomes
in general. In a study of women receiving simulated breast
cancer-related communications from a videotaped oncolo-
gist, van Osch et al. [26] found that affective communication
improves information recall. When physicians used positive
affect statements participants provided significantly more
correct answers on a questionnaire testing the participants’
recall of details in the diagnosis, prognosis, and treatment
options. A similar study involving participant viewing of
videotaped simulated oncologist communications, Shapiro
et al. [27] found that participants who received communica-
tion from a worried physician as opposed to the standard,
recalled significantly less medical information. The use of
negative and positive affect does not seem to have a consis-
tent effect on patient-physician communication. This is why
we should focus on not only the overall affective state but
also the timing of the affect. The importance of sentiment
variation over time has long been recognized in storytelling
[28] and more recently has been shown to be relevant in
natural language analysis and face-to-face communication
[29], [30], [31].

In health care communication skills training, virtual
agents, and online platforms have been used in an at-
tempt to provide an effective and reproducible experience.
In the past, affective computing helped design intelligent
virtual agent-based interactions for tele-health [32], [33].
Prendinger et al. [34] presented their initial work on a
virtual character that analyzes physiological data in real-
time, interprets emotions, and addresses users’ negative
affective states with empathic feedback. Peddle et al. [35] de-
veloped a virtual patient (VP) to develop and practice non-
technical knowledge, skills, and attitudes among under-
graduate health professionals. In a study with second and
third-year nursing students, the authors found that interac-
tions with VPs developed knowledge and skills across all
categories of non-technical skills to varying degrees. Third-
year students suggested that interactions with VPs helped
develop knowledge and skills in a clinical setting. Angus
et al. [36] developed a graphical visualization tool to model
patient-physician dialogue, to identify patterns of engage-
ment between individuals including communication accom-
modation, engagement, and repetition. Kleinsmith et al. [37]
developed a chat-based interactive virtual patient for early-
stage medical students to practice empathetic conversation.
During the training, students can gather information regard-
ing the history of the present illness, medical history, family
history and social history. Additionally, during each session,
the VPs delivered a statement of concern. These statements,
termed empathetic opportunities, were designed to elicit
an empathetic response from the user. In a study, medical
students interacted with the VP and standardized patients.
The responses of the participants were then rated by coders,
and it turned out that responses were more empathetic with
virtual patients than with standardized patients.

In this work, we have focused on improving prognosis
understanding among late-stage cancer patients. To this
end, we designed a virtual patient to conduct conversations
with oncologists. To provide feedback to users on com-
munication skills, we first developed algorithms to detect
behavioral cues in patient-physician conversations and then
engaged practicing physicians in participatory design to

TABLE 1: Study Data: Counts and Prognosis Survey Options

Resp. # Description
0 100%
1 about 90%
2 about 75%
3 about 50-50
4 about 25%
5 about 10%
6 0%
X don’t know

refine the program’s feedback module.

3 MATERIALS

We performed a post-hoc analysis of a study ( [38]) involv-
ing 382 visits between cancer patients (N = 382) and their
oncologists (N = 38). The data includes a transcript of the
conversations, in addition to both patient and physician
surveys associated with each visit. The survey included
questions to the physician and to the patient regarding the
patient’s prognosis [39]. Specifically, the prognosis question
directed to the physicians was: ”What do you believe are the
chances that this patient will live for 2 years or more?”; the
options provided for a response are shown in Table 1.

Patients were separately asked “What do you believe your
doctor thinks are the chances that you will live for 2 years
or more?”, with the same options for a response. When
the absolute difference of the responses is greater than 1,
the patient-physician prognostic conversation is defined as
being misunderstood. Data in which either the physician or
patient refused to answer were not used.

4 METHODS

In patient-physician communication there are several be-
havioral paradigms that help prognosis understanding.
Among many behavioral paradigms, we have explored two
patterns of behavior – lecturing, and the sentiment trajectory
of conversation. We first present how we set about detect-
ing these phenomena automatically and determining how
they are associated with prognosis understanding. Then
we explain our feedback design for these two behavioral
patterns, applicable in conversation practice with a virtual
conversational agent.

4.1 Lecturing

Lecturing generally occurs when the physician delivers a
lot of information without giving the patient a chance to
ask questions or to respond [1], [40]. We developed an
algorithm for calculating the LECT-UR Score (Lecturing
Estimation through Counting Turns with an Unbalanced-
length Ratio), a measure of lecturing-related conversational
structure. The algorithm compares the number of words
spoken by the physician to the number of words spoken
by the patient across a sliding window of a number of
patient-physician turns. When the average number of words
spoken by the physician exceeds a given threshold, while
the average number of words spoken by the patient is
below the threshold, the conversation segment is counted
as a lecturing event. Fig. 2 shows the area where a lecturing
event can occur in the space of the number of words spoken
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Fig. 2: Classification of Physician (D) and Patient (P) Turn Lengths over Window as Lecturing and Not-Lecturing a) Regions
of Lecturing and Not-Lecturing as P length vs. D length b) example transcript turn lengths

by the physician (y-axis) and patient (x-axis). The thresholds
are determined by maximizing the entropy of the outcome
variables (i.e., prognosis misunderstanding).

As shown in Fig. 2 region 1, when both the physician
and patient speak with brief turns it is not counted as
an instance of lecturing. Similarly, in region 3, when the
patient is speaking with a long turn length is not labeled
as lecturing. Only when the physician’s average turn length
exceeds a threshold, and the patient’s average turn length
does not exceed the threshold, (i.e., Region 2), is the window
labeled as an instance of lecturing.

This algorithm is expressed in the following equations:

L =
∑
∀k

I

(
k+W∑

i=kwi∈D

ωi − τ

)
× I

(
τ −

k+W∑
i=kwi∈P

ωi

)
(1)

I(x) = { 0 : x < 01 : x ≥ 0

where,
L : LECT-UR Score
W : window length in number of turns
τ : turn length disparity threshold
ω : words in the transcript
D : physician utterances
P : Patient utterances

Referring to equation 1, a value for the τ parameter must
be determined. As τ approaches zero, the area of region 1
in Fig. 2 will also approach zero. Alternatively, if a very
large value is used for τ , region 1 will cover the entire data
space. In order to be useful, the LECT-UR score should have
variability. Borrowing concepts from information theory, the
amount of information in a signal can be measured by the
signal’s entropy, where entropy is a measure of the amount
of uncertainty [41]. More specifically, for a given data set X ,
the definition of the entropy, H(X), is:

H(X) =

n∑
i=1

P(xi) logb
1

P(xi)
(2)

where P (xi) represents the probability of observing
the ith data point. As the probability of an event xi ap-
proaches certainty (i.e. P (xi) ≈ 1), the information content

approaches zero. Similarly, as the probability of an event
xi approaches zero, the contribution of such events to the
total information content in the data approaches zero. Thus,
in order to maximize the information contained in the
LECT-UR score, the scores should be well distributed (i.e.
maximizing the entropy).

In order to determine the optimal τ and W , we perform
a grid search. For a given τ and W we first calculate the
LECT-UR score L based on equation 1. We then applied
the kernel density estimation method [42] to compute the
probability density function P (x). From the probability
density function we then obtain the entropy of L using
equation 2. In Fig.3, the entropy values for different values
of τ and W are shown. The maximal entropy occurs with
τ = 103 and W = 20. After calculating the LECT-UR score
with the optimal parameters for each office visit transcript,
we partition the data into high and low LECT-UR groups
based on the median value. We then use the Z-score two-
tailed population proportion test to see the difference in the
percentage of prognosis misunderstanding.

To understand the effects of the confounding variables
we performed a logistic regression analysis. We applied
logistic regression on gender, age, disease severity, average
sentiment of the conversation, study site, study arm, and
the LECT-UR to predict the percentage of prognosis misun-
derstanding. We first normalized the independent variables
and fit a logistic regression model predicting the prognosis
understanding. In the section 5 we present the regression
weights and the expected prognosis misunderstanding per-
centage for different quantiles of the LECT-UR score.

4.2 Sentiment Trajectory
The sentiment of a text segment, generally represents the
emotional tone of the segment. In this work, we focus on
positive language usage. We define the sentiment trajectory
as the change that occurs in physician positive sentiment
over the course of the conversation. Prior research suggests
that the change of affective states is more important than
the overall affective state. For example, Ali et al. [30] showed
being positive at the beginning and at the end of a conversa-
tion is more effective than being positive overall. However,
the physician sentiment trajectory over a conversation has
not been well-studied in the context of patients’ prognosis
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Fig. 3: Finding the Optimal Lecturing Threshold and win-
dow size based on the heatmap of Entropy.

understanding. First, we describe how we define sentiment
trajectories and identify the number of sentiment trajectory
styles. Later, we present the association between the trajec-
tory styles and prognosis understanding.

We utilized the VADER ( [43]) automatic text analysis
tool. VADER calculates sentiment through the use of a rule-
based model that employs a sentiment lexicon (dictionary
of words containing an associated valence measure). The
VADER positive sentiment feature is the result of a large
number of human raters’ understanding of positive and
negative emotion associated with particular words. The
VADER positive sentiment score was evaluated for each
turn of the conversation. These physician and patient senti-
ment scores were used in two ways —- 1) average analysis,
and 2) sentiment trajectory. The average sentiment scores
for the physician were calculated for each transcript. The
transcripts were split into two groups based on the median
of the physician average sentiments (i.e. a High Sentiment
group and a Low Sentiment group). The outcome mea-
sure (Prognosis Misunderstanding%) was then compared
between the two groups using the z-score population pro-
portion test.

The sentiment trajectory is defined as the time series of
average physician positive sentiment over the segmented
conversation. More specifically, we partitioned each con-
versation transcript into a number of non-overlapping seg-
ments and calculated the physician’s average positive sen-
timent within each segment. Each conversation’s sentiment
trajectory is represented as a multidimensional vector, each
dimension corresponding to the average sentiment within
a corresponding segment of the conversation. We next
determined whether distinct styles of physician sentiment
trajectory existed among the conversations and investigated
whether any of these physician styles demonstrated signif-
icant differences in prognosis understanding. To determine
whether distinct styles of sentiment trajectory exist, we ap-
plied the k-means clustering algorithm ( [44]). The number
of clusters k was selected using the widely used Silhouette
method ( [45]), in which a grid search over a finite space of
integer values for the k parameters is performed to maxi-
mizes the Silhouette score. Fig. 4 shows the steps of finding
the sentiment trajectories. In order to determine whether
any of the resulting sentiment trajectory clusters had sta-
tistically significant differences in the outcome measures,

TABLE 2: Average Prognosis Misunderstanding scores in
High and Low LECT-UR Groups

Group Prognosis
Misunderstanding % p-value effect size

High LECT-UR
Low LECT-UR

83.6
72.3 0.00058 0.37

we applied the inference test for population proportions
pairwise between the groups.

We analyzed the effects of confounding variables by
performing a logistic regression analysis with the sentiment
trajectory styles. Specifically, we applied logistic regression
on gender, age, disease severity, average sentiment of the
conversation, study site, study arm, and the conversation
styles to predict the outcome measures. After fitting data
to logistic regression, we again can compare the relative
effect that each of the input variables has on predicting
whether a given data point (conversation) results in a “Don’t
understand prognosis” classification. After normalizing the
inputs (i.e., scaling and shifting to have mean=0 and vari-
ance=1) we fit the model and hence find the model weights.
We then investigate the weights of the logistic models and
the prognosis misunderstanding percentage for each of the
conversation styles.

In addition to the binary prognosis misunderstanding
we have looked at the linear score of misunderstanding. We
performed a linear regression analysis. The details are in
Appendix A and B.

5 FINDINGS

5.1 Association between LECT-UR Score and Progno-
sis Understanding
As shown in Table 2, the High LECT-UR Score group has
a larger percentage of prognosis misunderstanding than the
Low LECT-UR Score group (83.6 vs. 72.3) with a correspond-
ing p-value of 0.00058 and an estimated Cliff’s d effect size
of 0.37 [46].

Fig.5 shows the logistic regression weights when pre-
dicting the prognosis misunderstanding %. The (*) marked
features had a p-value less than 0.05. Among all the features
the disease severity had the highest positive correlation with
the prognosis misunderstanding. This shows that the more
the disease has progressed the more the patients are likely
to misunderstand their prognosis. Although the LECT-UR
score has small positive weight than age and severity, it
was significant. This model thus suggests that the higher a
conversation’s LECT-UR score, the more likely a patient will
misunderstand their prognosis. Fig. 6 shows the prognosis
misunderstanding percentage for the different quantile val-
ues of the LECT-UR score. To understand this let’s select
a quantile value of LECT-UR. For example, the oncologists
who are above the 80th percentile based on their LECT-UR
score had more than 54% of patients fail to understand their
prognosis.

5.2 Association between Sentiment and Prognosis Un-
derstanding
The difference in the prognosis misunderstanding % be-
tween the high and low average positive sentiment groups
did not show a significant difference. Out of the analyzed
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Fig. 4: Sentiment Trajectory Analysis Steps. (From left to right) 382 physician-patient conversations transcribed, VADER tool
is used to calculate the positive sentiment of each physician turn, the full conversation is segmented into equal regions, the
physician sentiment in each region is averaged into a trajectory, 382 trajectories are clustered in three clusters (i.e. trajectory
styles) that best fit the data, statistical comparisons was done of the patient prognosis understanding in each cluster.

Fig. 5: Logit model weights for predicting whether the
prognosis is misunderstood.

Fig. 6: Prognosis misunderstanding percentage for the dif-
ferent quantile values of the LECT-UR score.

number of clusters (k = 2 through 10), the number of
trajectory clusters that had the highest Silhouette score was
k=3. In addition, the BIC (Bayesian information criterion
[47]) analysis also identified that the optimal value for k is
3. Shown in Fig. 7 are the resulting three trajectory clusters:
cluster A (red, n = 15); cluster B (orange, n = 58), and cluster
C (blue, n = 191). Cluster A (Dynamic) is characterized by

Fig. 7: Resulting Sentiment Trajectory Clusters for best K=3.

TABLE 3: Prognosis misunderstanding % in three sentiment
trajectory clusters.

Trajectory cluster (size) Pairwise statistical comparison
A (15) B (58) C (191) PAB PBC PAC

46.1 52.6 67.9 0.34 0.04 0.06

a more dynamic shape, with increases in positive sentiment
at 25% into the conversation (segment 2), as well as at the
end of the conversation (segment 7). By contrast, Clusters
B (Medium) and C (low) have a mostly flat sentiment
level throughout the conversation with approximate aver-
age VADER sentiment levels of 0.1 and 0.05 respectively.

Shown in Table 3 are the outcome measures for each
of the three trajectory cluster groups along with pairwise
population percentage inference test p-values. As shown by
the Prognosis Misunderstanding %, the low cluster (cluster
C) showed the highest percentage with 67.9 % of the patients
having a discordant understanding of their prognosis. The
p-values for comparing the percentages between low and
dynamic and low with medium clusters were 0.04 and 0.06
respectively.

Fig. 8 shows the logistic regression weights when pre-
dicting the Prognosis Misunderstanding %. The variables
marked with a (*) had p < 0.05. In Fig. 8 the highest
positive value was assigned to severity. Although this is not
significant, it indicates that patients with a higher severity
level of the disease are more likely to misunderstand their



IEEE TRANSACTION ON AFFECTIVE COMPUTING AUGUST 2020 7

Fig. 8: Logistic regression model weights for predicting
whether the prognosis is misunderstood.

TABLE 4: Confounder-Adjusted Logit Model

Trajectory Cluster PMU % β p-val
A (Dynamic) 49.76 -0.294 0.033
B (Medium) 70.74 -0.155 -
C (Low) 84.85 0.209 -

prognosis. Patient gender had negative weight which in-
dicates that female patients were more likely to misunder-
stand their prognosis. This is also true for physician gender
but not significant. Average physician sentiment has low
positive weight but significant. This indicates being positive
overall is associated with misunderstanding prognosis. This
finding is similar to what we have seen in the past where
being positive had a negative correlation with how the
patients rate their physicians [25]. Among all the clusters,
the dynamic cluster has the lowest value. This indicates
that when physicians used the dynamic sentiment pattern
throughout the conversation, the patients were less likely to
misunderstand their prognosis.

Unlike linear regression, with logistic regression there
is no simple way to adjust the output (i.e., “correct” the
output) for the effect of confounding variables of each data
point. This is because the actual outputs are binary, whereas
the model output is a probability. Instead, we can compare
the predicted model Prognosis Misunderstanding % for
each cluster. When all confounding variables are set to have
the average value over our data set, we compute the models’
predicted Prognosis Misunderstanding % for each cluster
(see table 4). The Wald test p-value of the logistic regression
is also shown in table 4 (marked * in Fig. 8 when p < 0.05).
This again indicates that with confounding adjustment, the
dynamic style cluster has the lowest Prognosis Misunder-
standing % among all clusters.

6 DESIGN OF SOPHIE

Our aim is to develop a virtual standardized patient for
practicing communication skills. In medical education, stu-
dents practice with a standardized patient – an actor/actress
pretends to have a medical condition. Students interact with
the standardized patients and later they receive feedback on
their interaction. Our goal is to allow the medical students
to practice their communication skills with a virtual agent,
allowing multiple repetitions in each student’s own envi-

ronment, which would be difficult to achieve with actual
standardized patients.

6.1 Scenario

We have developed a prototype of the SOPHIE program,
which allows individuals to have a conversation with a
virtual agent concerning prognosis and treatment options.
SOPHIE presents herself as a late-stage cancer patient. We
have used the SPIKES protocol to guide the conversation
[18]. The SPIKES protocol was developed to train physicians
deliver bad news. The SPIKES protocol has six steps – 1)
setting up the interview, 2) assessing patients’ perception, 3)
obtaining patients’ invitation, 4) giving knowledge and in-
formation to the patient, 5) addressing the patient’s emotion
with empathetic responses, and 6) strategy and summary.
With SOPHIE, at the beginning of the conversation (SPIKES
step 1) SOPHIE introduces herself and mentions that she
has lung cancer. Then SOPHIE raises the topic of her sleep
pattern at night and asks if she needs to change her pain
medication, allowing the physician to assess her perception
(SPIKES step 2). She states that her current pain medica-
tion, Lortab, is not working anymore. SOPHIE then turns
attention to her test results, giving the physician a chance
to obtain SOPHIE’s invitation to talk about more difficult
topics (SPIKES step 3), before asking more specifically about
her prognosis if the physician did not already address it,
thus allowing the physician to provide information to the
patient (SPIKES step 4). SOPHIE then asks about what
her options are, allowing the physician to give empathetic
responses (SPIKES step 5). Finally, she follows up by dis-
cussing whether chemotherapy remains an option, whether
she should focus on comfort care, what the side effects of
chemotherapy are, and how to break the news to her family,
allowing for the physician to provide strategy & summary
information (SPIKES step 6).

This type of discussion promotes understanding of the
patient, gathering information from the patient, discussing
critical information, and responding with empathy.

6.2 Dialogue System

The SOPHIE program is built on top of Eta, a general
purpose dialogue management framework representing a
further development of the LISSA system [48], [49], [50].
Each dialogue agent built within the Eta framework defines
a flexible, modifiable dialogue schema, which specifies a
sequence of intended and expected interactions with the
user. The body of a dialogue schema consists of a sequence
of formal assertions that express either actions intended
by the agent, or inputs expected from the user. These
events are dynamically instantiated into a dialogue plan
over the course of the conversations. As the conversation
proceeds, this plan is subject to modification based on the
interpretation of each user input in the context of the agent’s
previous utterance. For instance, if a planned query to the
user has already been answered by some part of a user’s
previous input, the dialogue manager can skip that query.
The dialogue manager can also expand steps into subplans
by instantiating sub-schemas in the case of more complex
interactions.
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The dialogue management framework captures the
users’ response from the audio stream using an automatic
speech recognition technique. Both interpretation of the
user’s replies and generation of the agent’s responses are
handled using transduction to and from simple context-
independent English sentences called gist-clauses. The dia-
logue manager interprets each user’s input in the context
of SOPHIE’s previous question, using this context to select
topically relevant pattern transduction hierarchies to use to
interpret the user’s response. The context of the previous
question is useful for resolving anaphora, ellipsis, and other
pragmatic phenomena. The rules in the selected hierarchies
are then used to derive one or more gist-clauses from the
user’s input, containing explicit representations of both
statements and questions detected in the user’s utterance.
For example, if SOPHIE asks “Do you think I should take
stronger pain medication?” and the user answers “Yes.”, the
gist-clause extracted would be “I think you should take
stronger pain medication.” If the user replies “Can you
tell me more about how you’re feeling?”, the gist-clause
extracted would be “Can you tell me more about your
pain?”, having interpreted the question as an inquiry about
SOPHIE’s pain in the particular context of her question.

As mentioned, the gist-clauses are derived using hierar-
chical pattern transduction methods. Each transduction hi-
erarchy specifies patterns at its nodes that are to be matched
to input, with terminal nodes providing result templates to
be used according to various directives (e.g. storing as a
gist-clause, outputting the result, specifying a sub-schema
to be instantiated, etc.). The pattern templates look for
particular words or word features, including “wildcards”
matching any word sequence of some length. In the case of a
failure to match, the system first tries siblings of the pattern
before backtracking to the previous level; the efficiency of
the hierarchical pattern matching approach lies in the fact
that higher levels can segment utterances into meaningful
parts, thus reducing the amount of backtracking necessary
to interpret the user’s input.

The agent’s responses to the user are likewise deter-
mined using hierarchical pattern transduction. In the case
where the gist-clause from the user’s utterance is a simple
statement, the agent selects a reaction to the gist-clause and
either instantiates a sub-schema to ask a follow-up question,
or proceeds to the next topic in the main schema. If the gist-
clause from the user’s utterance is a question, the agent
instantiates a sub-schema to select a reply to the user’s
question and await either a follow-up question or closure
from the user. The system also has the potential to form
replies to multiple gist clauses from a single user turn, for
instance reacting to the user’s statement before responding
to a final question by the user.

The transduction hierarchies themselves were designed
in a modular fashion, with a “backbone” of transduction
trees detecting general questions that SOPHIE might expect
a user to ask, with additional transduction trees for detect-
ing questions and replies specific to the current topic of the
conversation. In the case of a failure to match a specific
response, the dialogue manager can fall back to the current
general question, and if this fallback fails, simply output a
generic default response.

Fig. 9: SOPHIE virtual agent

6.3 Interface
The SOPHIE system features a virtual agent (shown in fig.
9). At the beginning, users start the conversation by pressing
the “start recording” button. Users can then proceed to
conversing with SOPHIE, and when the conversation is
over the program takes the user to the feedback page. The
feedback interface is shown in Fig. 10. On the left side
of the feedback interface we show the transcript. The red
marked speech is considered too long for the patients. On
the right side of the interface we show the speech rate of
the user, number of questions user asked, turn taking, and
the sentiment trajectory. Past literature has established that
conversational speech rate is important in enabling patients
to understand their prognosis. Also, asking questions of the
patient is important for ensuring that the patient under-
stands what is being said ( [1]). The turn taking annotation
shows the length of each turn by SOPHIE and the user.
The example was chosen to illustrate the lecturing style of
conversation. The feedback shows the sentiment trajectory
of both SOPHIE and the user. Additionally, the feedback
shows a suggested sentiment trajectory for the user. The
feedback page displays explanations of individual items
when users hover their mouse on them.

6.4 Pilot Study
We conducted a pilot study with nine practicing clinicians
(fellows, residents, and nurse practitioners) from the Uni-
versity of Rochester Medical Center. Participation was vol-
untary and we did not offer any payment for their participa-
tion. Additionally, we made it clear that not participating or
stopping the study in the middle will have no consequences.
Among these participants, one participant dropped out due
to the bad audio quality of her computer. All participants
were white and aged between 30 and 55. Three participants
were female and all were native English speakers. Our goal
was to gather more information about their experience with
SOPHIE, any limitations, and how we could improve the
system. The study was performed with one participant at a
time on the Zoom communication platform. Each day, we
asked the invited participant to have a conversation with
SOPHIE and to look at the feedback.

After conversing and receiving the feedback, the par-
ticipants were interviewed. We have performed a thematic
analysis on the interview transcripts; our findings are below.
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Fig. 10: Feedback interface of SOPHIE. On the left side the conversation transcript is shown. On the right (from top to
bottom) speech rate, number of questions are shown. Turn taking shows the turn length and at the bottom the sentiment
trajectory of both physician and SOPHIE are shown with the ideal/suggested sentiment trajectory.

6.4.1 Medical History
All the participants mentioned that a brief medical history
should be presented before starting the conversation with
SOPHIE. One participant said,

“I think some kind of medical record would be
extremely helpful. I thought I don’t have any in-
formation to say to her.”

The participants mentioned that in a regular standardized
patient visit, they are given a medical record before they go
into the room. They suggested the same scenario should
be replicated for SOPHIE. They also mentioned that the
way SOPHIE initiated presentation of her symptoms was
unusual. In most cases, patients do not actively start the
conversation. Rather, the physician looks at the patient’s
medical record and then starts asking about any new symp-
toms. In the future, we expect to modify the dialogues
so that SOPHIE appears more passive and lets the users
ask questions, though completely user-driven conversation
remains beyond the state of the art.

6.4.2 Topics of Conversation
Participants (four out of eight) mentioned that SOPHIE
jumped between topics and did not allow full coverage of a
given topic. For example, SOPHIE begins talking about her
pain medication, but the participants often asked questions
about the current dosage and about other pain medication
she had taken in the past. Since SOPHIE’s limited dialogue
repertoire falls short of covering those questions, she starts
talking about her current medication (i.e., Lortab). One
participant said,

“When she mentioned pain and I was trying to find
more about the pain in order to help her with her
question. But the answers that I gave her to her

questions did not really fit and she just jumped to
the next topic so I jumped with it but that was a
little bit jarring to me.”

Although SOPHIE changed the conversation topics
abruptly, the questions she asked were found to be realistic.
Five participants felt that SOPHIE was able to express
her concerns and make them feel the seriousness of the
situation.

6.4.3 Feedback on Speech Rate

Participants (seven out of eight) mentioned that the speech
rate feedback was easy to understand and very useful. One
participant said,

“I know I tend to speak very fast, receiving feed-
back on my speech rate is going to be very useful.”

Another participant mentioned that in normal practice there
is no way of measuring the speech-rate. However, with
SOPHIE we could provide the information about how fast
the physicians are speaking, which is useful.

“I think the feedback (speech-rate) was useful. I
never had someone measure my speech rate before.
Sometimes I try to be cognizant of speaking a
little bit slower with the patients but it was nice
to actually get some feedback like you are doing
okay.”

However, the participants also noted that SOPHIE’s
speech rate was constant, making it difficult for them to
adjust their speech rate depending on whether they are
discussing serious issues or a casual topic. In the future,
we plan to adjust SOPHIE’s speech rate based on the seri-
ousness of the topic being discussed.
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6.4.4 Number of Questions Asked
Seven out of eight participants expressed that feedback
on the number of questions asked was very useful. One
participant said,

“It was helpful to get the information about how
many questions you have asked, because I think
a lot of the times we walk away from the conver-
sation thinking that we really invited the patients
into the talk, when maybe we didn’t and we did a
lot of lecturing.”

In addition to the number of questions asked, participants
suggested that it should be highlighted what type of ques-
tions were asked, for example, how many history-taking
questions were asked and how many emotional questions
were asked.

6.4.5 Explanation of Sentiment
Seven participants mentioned that they did not understand
the meaning of the sentiment values. They also said that
the sentiment feedback is hard to interpret and they often
confused it with empathy. Four participants wanted to see
an example sentence of positive and negative sentiment.
The participants also mentioned that changing or adjusting
sentiment while engaged in the conversation may add to
the cognitive load. They suggested that instead of asking
the user to be positive at certain moments we should just
stress the importance of dynamically adjusting sentiment.

6.4.6 Additional Feedback
The participants also asked for additional feedback that they
found useful in practice. Two participants said that there
are a few expressions of empathy in the dialogue and they
should be highlighted in transcripts so that users could look
back and understand how they responded. One participant
said that the turn-taking feedback is useful, however, it does
not show the total amount of time a person was speaking.
The participant said,

“I tend to speak a lot, but I don’t want to make the
patients feel that I am not listening. I want to know
that I am giving a chance to ask questions.”

He suggested adding a bar chart to the feedback page that
indicates the total speech length and time.

Three participants suggested giving feedback on nonver-
bal behaviors, such as eye contact. One of them said,

“One of the things I think is important, and I have
seen it in other clinicians, is eye contact. I think it’s
super important when we are giving bad news or
having difficult conversations.”

7 DISCUSSION, LIMITATIONS, AND FUTURE WORK

We have described two novel contributions to communi-
cation research; empiric associations between automatically
detected behaviors and patient prognostic understanding,
and the development of SOPHIE, an automated system
for teaching and evaluating patient-physician communica-
tion. In addition to the communication training program,
the automatic detection of behaviors can be applied in
prerecorded standardized patient interactions to evaluate
communication skills. We acknowledge some limitations in

the development of SOPHIE and the use of such a system
as a basis for feedback.

Our finding of associations between trajectory styles
and lecturing tendencies with prognosis understanding
measures may not be causal. The lecturing analysis was
motivated from prior research that suggested that when a
physician tends towards lecturing, this results in the patient
not retaining as much of the information presented [1].
An alternative explanation could be that when physicians
sense that patients do not understand, physicians are mo-
tivated to speak more, explain in greater detail, leading to
a more lecturing-like structured conversation. Additionally,
apparently passive patients may just lack understanding,
which can result in poor engagement, and this may result in
conversations with a high LECT-UR score. Additionally, the
extent to which the LECT-UR score correlates with human
annotated instances of “ground truth” lecturing should be
investigated. However, it should be noted that despite any
difference between the LECT-UR lecturing-like structure
measure and human-labelled ground truth instances of lec-
turing, our results establish that the LECT-UR score serves
as a useful metric in its association with patient prognosis
misunderstanding.

In explaining the association of higher prognosis un-
derstanding with the dynamic sentiment trajectory style,
we surmise that being dynamic keeps the patient more
engaged, and that ending on a positive note keeps the
patient less depressed and more likely to remember the
information just presented. However, again, an alternative
anticausal explanation could be that patients’ lack of progno-
sis understanding, and their physician’s perception of this,
motivates the physician to speak in a calmer, less dynamic
way (e.g., sentiment trajectory styles B or C).

We found that three clusters (k=3) represent the data
best according to the Silhouette score. While the Silhouete
score is trusted method for finding the optimal number of
clusters for k¿=2, the Silhouette method is unable to evaluate
when the data is better represented by a single group (i.e.
k=1). In order to determine that our finding of three clusters
is not an artifact of the techniques used, we used the
Bayesian Information Criterion (BIC) [47] as an additional
method of validating the optimal k. We used a related
clustering technique, the Gaussian Mixture Model (GMM),
together with BIC to determine whether the data is better
represented by a single cluster. The GMM-BIC analysis also
found that the optimal k=3, and importantly showed that
k=1 was inferior. While it is possible to use a Gaussian
Mixture Model as our primary clustering method instead
of k-means, there are multiple reasons why k-means is more
appropriate such as skewed distribution and fixed intervals.
In addition to considering the number of clusters we have
experimented with a range of values for the number of
segments. A large segment is not suitable for trajectory
analysis since it may contain the bulk of the conversation,
and a small segment size is also not suitable since it may
not contain representative turns from both physicians and
patients. Thus we experimented with five, eight, ten, and
fifteen as our number of segments. In this paper, we have
shown results for the choice of eight segments, omitting the
others as they produced similar results.

Some limitations exist with regard to the bigger picture
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of SOPHIE-like virtual agents. Past research suggests that
while conversing with a virtual agent or AI-driven conver-
sational agent, humans tend to use shorter turns [51]. This
could be a limitation of using SOPHIE to train users to avoid
lecturing, since users might use shorter turns regardless of
feedback. Our LECT-UR scoring method utilizes a window
of consecutive turns that also includes the virtual agent’s
turn. This allows the lecturing feedback to dynamically
adapt to the conversation states and to the user’s behavior.
We think that this can help circumvent the limitation posed
by using feedback trained on human-human conversation
with a computerized dialogue system, though addressing
this concern through a randomized study remains part of
our future work.

The current dialogue manager itself also has some lim-
itations, which we aim to address in the future. First, the
output of the currently used automatic speech recognition
(ASR) software1 does not include punctuation. This limits
the agent’s ability to interpret the user correctly. Secondly,
as discussed in Section 6.4.2, the dialogue manager tended
to abruptly jump to the next topic in the main dialogue
schema in cases where it failed to understand the user’s
input. This will be addressed by further expanding the
interpretation patterns on the basis of the dialogues we
observed in this study, as well as by allowing for more
robust default strategies, such as staying on topic when
it appears that the agent misinterpreted the user’s input
or when the user’s input appears irrelevant to the agent’s
question.

While our study focused on high patient prognosis un-
derstanding as a positive goal, it should be acknowledged
that patients sometimes don’t want to know specifically
how much time they have left [52]. In designing a commu-
nication training program we should incorporate options
as to how much information the physician should deliver.
Another limitation of this work may be that our findings are
limited to patient-physician relationships involving diseases
and conditions as serious and sensitive as advanced cancer
care and end-of-life communication.

8 CONCLUSION

In summary, in this paper, we provide early results of our
multi-stage research examining patient-physician conversa-
tions, identification of effective traits (not lecturing, asking
questions, delivering news on a positive note), development
of an automated way of evaluating these traits, and the
design of a real-time online standardized patient-physician
communication training system where an avatar plays the
role of a standardized patient. We structured our exploration
in the context of conversations between final stage cancer
patients (i.e., terminal patients) and oncologists.

In [53] McGreevey et al. presented a few considerations
for implementing AI-driven conversational agents in health
care. One important consideration is the level of risk associ-
ated with a conversational agent when it makes a mistake.
SOPHIE is a low-risk program, and can be augmented with
traditional training modules. In addition to being low-risk,
SOPHIE allows access by individuals beyond geographical

1. https://www.nuance.com/index.html

boundaries. This will promote the fair use of the program by
reaching the lower socio-economic areas. Indeed, we believe
that successful SOPHIE-like systems could have broader
global impacts. Two-thirds of cancer deaths happen in low-
and mid-income countries such as those in Latin America
and sub-Saharan Africa [15], [16]. However, most of the
seriously ill patients don’t have access to quality palliative
care (PC) because of inadequate PC training programs.
Current medical training in the countries of these regions
focuses on treating diseases. Comfort care in chronic life-
threatening diseases such as cancer is still in its infancy.
In Africa, some countries–Kenya, Uganda and Botswana–
have initiated post-graduate training programs for palliative
care [54], [55]; only South Africa has a well-established post-
graduate and research program on palliative care [56]. We
are hopeful that online programs such as SOPHIE can pro-
vide a basis for helping these communities develop training
programs for PC physicians.
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