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Fig. 1. Average Facial Expression Levels of Gender-Divergent and Gender-Shared Features During Truth and Bluffing in the GAHL Framework. 
Representative images showing average expression level on a 0-100 scale. a) Example divergent feature, joy. b) Example shared feature, engagement. c) The 
Gender-Augmented Hyper-Linear Facial Expression Model has both shared parameters ωS (for which it is more beneficial to pool male and female training data) 
as well as separate male and female divergent parameters ωM , ωF (which are necessary to support non-linear complexity across genders). 

 
Abstract— While facial expression behavior has been 

understood as mostly universal between the genders, recent 
research has highlighted important differences, including the 
expression of smiles and surprise. Despite such gender 
differences, studies involving facial expression often have limited 
sample sizes such that splitting the data set in half to train 
separate male and female models has been untenable. In order to 
leverage gender divergent complexity in facial expression models 
while also using a full dataset to train shared behaviors, we 
developed GAHL: the Gender-Augmented Hyper-Linear model. 
GAHL selectively increases non-linear model complexity with 
regards to  gender divergent features. Using both simulated data 
and data from a study of facial expressions during deception 
(N=80, >6 hours), we demonstrate that when the facial expression 
data set size is in the range of N<75, GAHL outperforms several 
mainstream machine learning models including logistic 
regression, decision tree, and SVM with polynomial and radial 
basis function kernels. 

I. INTRODUCTION  
A common trait of many dyadic behavioral studies is 

having small data size (i.e. N < 500). However, in order to 
exploit complex machine learning models (i.e. deep learning), 
large datasets (N > 1,000 and much larger) are typically 
required. As the bias-variance tradeoff famously dictates, 
using models which are too complex for a given data set leads 
to higher generalization error [5], even with the application of 
various regularization approaches [17]. This problem has been 
shown to be exacerbated by high dimensionality in the number 
of features [6]. Linear models have often been used with small 
data sets, and linear models with L1 regularization (i.e. 
LASSO regression) have demonstrated ability to handle large 
dimensions [12,13]. However, purely linear models are often 
just too simple to model the complexity of many problems.  

One such source of complexity lies in the interpretation of 
facial expression differences between men and women [1,2]. 
Prior research has shown that men and women tend to express 
certain facial expressions associated with emotion at different 
levels depending on the situation due to emotion regulation. In 
an analysis of expressions of participants watching videos 
with affective content, McDuff et al. found that women tend to 
express more inner brow raise (AU1) and smile (AU12) than 
men [2] (where "AU" refers to the Facial Action Coding 
System "action unit" number [22,23]). Dimberg, et al., in 
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investigating differences in male and female responses to 
viewing pictures with angry and happy faces, found that 
women showed more pronounced facial reactions, especially 
to happy faces [7]. While these findings may support a 
stereotype that women are more expressive than men [1], 
several studies have identified that for some facial expression 
types, women show less expression than men [2].  For 
example, McDuff et al., found that women express less brow 
furrow (AU4) [2], a facial action unit which has been 
associated with anger [3]. Similarly, Evers et al. found 
evidence that not only are women less likely to show 
expressions of anger, but that they are also more likely to 
suppress such expressions [3]. Hence, these studies show that 
there are inherent differences in the way certain facial action 
patterns are expressed between genders.  

The nexus of low data set sample size with facial 
expression analysis is particularly true of studies involving 
deception, where N is often < 200 [14,16,19]. While studies 
have investigated deceptive communication using a vast array 
of diverse features and methods [27,28,29], facial expression 
analysis has been one of the most prominent areas of focus 
over the years. Ekman et al. considered facial expressions as a 
form of unintentional "emotional leakage" that provides clues 
of one's deception [12]. Ekman also showed that expressions 
of joy are associated with deception under a psychological 
theory called duping delight [19]. Duping delight is the 
premise that deceivers take delight in lying to another person, 
especially when there is an audience to the deceptive behavior 
[19]. Engagement has been found to be important in past 
literature for deception as well. Dunbar et al showed that 
synchrony also described as engagement was found to be a 
major factor for honest participants in a dyadic study [21]. 
However, there has been no previous research demonstrating 
that engagement is expressed at different levels between males 
and females. A multimodal approach was taken by Rosas et al. 
who considered both verbal and non-verbal behavior, 
including manually labeled facial expressions and hand 
movements. Their analysis identified that the most influential 
facial features of deception were frowning (AU4, AU7, and 
AU17 which is closely associated with anger) and brow raiser 
(AU1, AU2 which are closely associated with surprise) [22]. 
We look to further this past research of facial expression 
analysis to detect deception by leveraging both the differences 
and similarities of automated facial expression analysis 
between males and females.  

In this paper, we present the GAHL (Gender-Augmented 
Hyper-Linear) facial expression model framework shown in 
Fig. 1, for data sets with low data sample size and high 
individual variance. GAHL selectively adds nonlinearity for 
specific traditional emotion-based facial features which have 
gender divergence. The GAHL model maintains two sets of 
parameters, those that are shared for both genders, and those 
that are separately maintained for males and females. The 
GAHL model uses the full data set to train shared parameters 
but allows nonlinear gender-specific complexity to exist 
regarding facial expression features which have been 

demonstrated to have gender-specific behavior. We apply the 
GAHL model to predict when participants in a small 
communication game study (N=80) are being honest or 
deceptive. Our contributions are summarized as follows: 

• Development of the Gender-Augmented Hyper-
Linear facial expression model which adds limited nonlinear 
complexity for gender-divergent facial expressions. 

•  Characterization of the superiority of the GAHL 
model over several standard machine learning models for a 
range of low data set sizes (N < ~100) using both simulated 
data as well as a dyadic interrogation data set involving honest 
and bluffing witnesses (N=80). 

• Identification that the facial expressions associated 
with joy, surprise, and engagement are relevant to detecting 
deception, with joy and surprise demonstrating gender 
divergence, and engagement being shared between genders. 

II. METHODS 
In this section we first describe the GAHL framework and 

model implementation. We then describe how the simulation 
data was generated followed by an overview of how the 
deception data was collected with its associated deception 
game protocol. The facial feature extraction methods are 
described, followed by the bootstrapping resampling 
methodology used to evaluate performance with various input 
training set sizes for GAHL and other classification methods 
used throughout this study. While much of the description is 
written in the context of the deception detection classification 
task, the GAHL model is intended to be broadly applicable to 
a wide variety of behavioral classification tasks. 

A. The GAHL Framework 
1) Feature Type Determination (divergent/shared) 

Shown in Fig. 1 is a high-level description of the GAHL 
model framework. The first step of the GAHL framework 
involves identifying which of the facial expression input 
features are expected to be gender-divergent (Fig. 1a) vs. 
gender-shared (Fig. 1b) for the desired classification task (e.g. 
deception detection). This distinction can be made for each 
feature using a combination of domain knowledge and 
statistical analysis of the data. Domain knowledge most 
preferably would indicate gender divergence for the specific 
classification task at hand (i.e. which facial expression 
features have different meanings, or different meaning levels, 
for males and females regarding the classification task). 
Compared to specific domain knowledge, which may be rare, 
general domain knowledge, which provides non-task specific 
evidence of facial expression divergence between genders, 
may also be useful in determining divergent features. 
Statistical testing may be used either together with or in lieu of 
domain knowledge to individually test whether a given feature 
is gender-divergent or gender-shared for a given task. The 
Mann Whitney U test [9] may be used to test whether a given 
feature has different median values between the different 



                                     
 

 

 
 

 
 

Fig. 2. Representation of GAHL Model Decision Surface. 

classification groups (i.e. truthful vs. deceptive speakers). We 
will use each of these feature type determination methods in 
categorizing divergent and shared features for the task of 
deception detection. 

2) The Gender Augmented Hyper-Linear Model 

Shown in Fig. 1c is a high-level graphical description of 
the mathematical data flow in the GAHL model, which is 
specifically described in equations 1-2 below 

[1] 

   [2] 

where O represents the GAHL model’s final summing node 
output, S represents the set of shared features, D represents the 
class of divergent features, ωS represents the shared weights, 
ωM represents the male weights, ωF represents the female 
weights, g, a gender variable, which is 1 for female data points 
and 0 for males, and finally, ω0 represents the summing offset 
(logistic regression intercept) 

The GAHL model’s input consists of the divergent 
features (Xi, i ∈	 D) and shared input features (Xi, i ∈	 S) 
separated into two groups of inputs as shown. The product of 
the shared features Xi, i ∈	S and the shared weights ωS are 
summed in the circular node S∑. The divergent features are 
multiplied by two sets of weights, first the male weights, ωM, 
which are then summed in the M∑ node. Similarly, the 
divergent features are also multiplied by a set of female 
weights ωF and then summed in the F∑ node. The outputs of 
the M∑ and F∑ nodes both go to a gating function, which 
selectively allows only one output to pass as controlled by the 
gender input. More specifically, if the gender is female, then 
only the F∑ node output is allowed to pass onto the final 
summing stage. Alternatively, if the gender for a given data 
point is male, the M∑ node output is allowed to pass to the 
final summing node. The S∑ node output always passes to the 
summing node regardless of gender. 

It should be noted that the gating function does not need to 
be controlled by binary gender. Rather the model supports the 
use of non-binary (i.e. a gender value between 0 and 1). The 
resulting decision surface of the GAHL model is shown in Fig. 
2. Effectively, the gating function introduces the helical 
nonlinear surface that cannot be achieved by a plain linear 

model alone (even if gender is added as an input). The 
complex nonlinearities associated with the gender variable are 
only introduced to the features which have been greedily 
identified as divergent. It should be noted that the complexity 
of this model (in terms of degrees of freedom) is linear in the 
number of features. More specifically, the total number of 
model parameters (degrees of freedom) is two times the 
number of divergent features and one times the number of 
shared features (plus one for the offset) 

The parameters of the GAHL model were trained with 
stochastic gradient ascent. It is worth pointing out that the 
shared weights, ωS, will be affected by all training data, 
whereas the male weights ωM are only updated by male data 
points, and the female weights ωF are updated by only female 
data points 

B. Simulation Data 
Simulated data used to evaluate GAHL is generated as  a 

collection of data points with gender labels (male/female) and 
outcome labels (truth/bluff) over a two-dimensional input 
feature space. The two input features are simply referred to as 
the "shared feature" and the "divergent feature". Each of the 
features were designed to have a log-linear effect on the 
probability of the outcome being truth/bluff. The shared 
feature provides the same influence on the truth/bluff 
determination for both male and female datapoints. 
Alternatively, the gender-divergent feature is designed to have 
opposite effect on the outcome variable depending upon the 
gender. More specifically, the shared feature has a direct 
positive effect on the likelihood that both male and female 
data points are truth (i.e. the larger the shared-feature, the 
more likely that a data point is truth, regardless of gender). In 
contrast, as the divergent feature gets larger, male data points 
are more likely to be truth, but female datapoints are less 
likely to be truth. These rules were used to generate a data set 
(N = 2000) with the distributions shown in Fig. 3. Note how 
for both males and females, the frequency of truth (yellow) 
increases as the shared feature increases. Alternatively, as the 
divergent feature increases, the male truth frequency increases 
while the female truth frequency decreases. It is important to 
note that the ideal separating classification line for the male 
and female data are perpendicular. Even if gender is added as 
a feature, a linear model alone would never be able to 
implement two perpendicular classification boundaries. This 
simulated data is used to evaluate the performance of GAHL 
as well as several other models.  

 
Fig. 3. Simulated Data Distributions of Truth and Bluff Among Males 
and Females Over the Space of a Shared and Divergent Feature.  

 



                                     
 

 

 
 

C. Deception Game Protocol 
Participants were recruited to play a deception game with 

another participant over video chat. The deception game is a 
customized version of the Automatic Dyadic Data Recorder 
framework [9]. Participants were recruited from a university 
community and were randomly assigned the role of either 
witness or interrogator. The game began with the witness 
being instructed to memorize an image shown by the web 
application for a 60 second viewing period. The web 
application then randomly instructed the witness to either bluff 
or tell the truth regarding the image to the interrogator. Then 
the interrogator was directed by the web application to ask the 
witness several predetermined questions about the image to 
determine if the witness was bluffing or telling the truth. 
Following these questions there was a short period of time 
where the interrogator was encouraged to ask the witness their 
own questions.  

Each participant played up to eight rounds, four as an 
interrogator and four as a witness. The witnesses were 
motivated to get the interrogator to believe them by providing 
a monetary bonus each round. If the witness bluffed and the 
interrogator believed them, they received $20, and if they told 
the truth and the interrogator believed them, they received 
$10. The interrogators were motivated to correctly determine 
whether the witness was lying or not by providing them with a 
monetary bonus each round as well. They received $10 if they 
were able to correctly determine if the witness was bluffing or 
telling the truth. In addition, participants were notified ahead 
of time that one of the eight rounds they played would be 
randomly selected to be a “high stakes round”, in which the 
bonus amount increased to $50. The total number of unique 
dyads in the study was N=80 in which 36 male witnesses (14 
truth, 22 bluff) and 44 female witnesses (20 truth, 24 bluff). 

D. Automated Facial Expression Extraction 
Facial expressions were extracted from the relevant 

questioning segments of the raw video study data using the 
Affdex tool [10]. Affdex uses an SVM based model trained 
over one million facial expression videos containing affective-
rich content. We use expression level values for joy, fear, 
sadness, surprise, disgust, contempt, and engagement from this 
tool [22, 23]. 

Using this tool, we were able to extract automated facial 
features for over 6 hours of video with their respective 
emotion-associated expression levels labeled. The emotion-
associated expression features are measured on a scale of 0 to 
100. The use of emotion-associated features vs. individual 
facial action units was motivated by the conjecture that 
deception and honesty are more directly related to emotional 
states rather than the contraction of specific facial muscle 
groups [31]. 

To validate the Affdex tool we used 327 images of 
participants expressing a given emotion from the Cohn-
Kanade CK+ Database [30]. The CK+ database provides 
categorical emotion labels, i.e. each image is given a single 
emotion label out of the set of: Happy/Joy, Anger, Disgust, 
Fear, Sadness, Surprise, and Contempt. Affdex provides 

multidimensional output in that each emotion category has its 
own independent numerical output. In order to convert Affdex 
numerical output into categorical data, the CK+ emotion 
category with the maximum output is selected as the label. 
The maximum-category Affdex emotion label matched with 
the hand labeled CK+ emotion label 74.0 percent of the time. 
This task was also done by a human labeler with an accuracy 
of 75.2 percent, which is comparable to the Affdex accuracy. 

E. Classification 
The classification accuracy for the GAHL model was 

compared to several models including: logistic regression with 
gender as an input and both L1 and L2 regularization, a M/F 
Log. Reg. (two separate logistic regression models, one for 
female data and one for male data), Naive Bayes, and SVM 
with radial basis function and polynomial (degree 2) kernels. 
For each of the classifiers and each of the training set sizes, 
the models were rerun using 1000 random data splits to reduce 
randomness in the results.  During these runs ½ of the training 
data was used as a development set to determine the ideal 
hyper parameters. The models were tested across different 
training set sizes to further demonstrate the effectiveness of 
GAHL and show the “sweet spot” of training set sizes where 
GAHL is most useful. 

III. RESULTS 
In this section we discuss the results from the simulated 

dataset and from the deception dataset. We present the 
analysis of the statistical differences within each dataset and 
show how the GAHL model was able to improve the accuracy 
for the classification tasks within each dataset. Furthermore, 
for the linear models the weights of the features are displayed. 

A. Simulation Data 
 Shown in Fig. 4 are the bootstrap resampled classification 
results of the tested models on the simulation data. In the 
range of training set sizes tested, the GAHL model 
demonstrates the best performance. The gender- 
separated logistic regression model ("M/F Log. Reg.") 
approaches the same performance level as the GAHL model at 
a training set size of ~105 samples (74.3% vs.74.1%). The 
maximum performance improvement between GAHL and the 
next best performing M/F Log. Reg. model occurs at a training 
set size of 18 with the respective accuracies of 68% and 61%. 
As demonstrated in Fig. 4, the logistic regression model 
performs markedly worse than the GAHL model at all tested 
training set sizes. For reference, the performance of a 
featureless model is trained, with the sole parameter of the 
predicted truth to bluff ratio (i.e. the “Prob” model) 

B. Deception Data 
 In this section, we outline results from the deception data. 
First, we describe the divergent/shared feature type 
assignment based on both domain knowledge and statistical 
test results. Second, we show how GAHL and other 
mainstream models perform on this dataset. Finally, we show 
weights of each feature from the linear models to show how 
the divergent features in GAHL play a major role.  



                                     
 

 

 
 

TABLE I: DIFFERENCES BETWEEN TRUTHFUL AND DECEPTIVE WITNESSES 
GROUPED BY GENDER. 

Gender Feature Buff Truth Cohen’s d p-value 
 joy 23.1 18.8 -0.396 0.040 
Female surprise 

engagement 
6.5 
43.4 

10.7 
45.3 

0.667 
0.130 

0.048 
0.282 

 
Male 

joy 
surprise 
engagement 

6.3 
6.7 
26.6 

16.3 
5.1 
38.6 

0.801 
-0.294 
0.836 

0.070 
0.391 
0.031 

 

1) Domain Knowledge for Feature Type Selection 

 As introduced in the background section of the 
introduction, here is evidence indicating that smiling (joy) and 
engagement are expected to be relevant in deception detection 
for both males and females [18,19,23]. Additionally, anger 
and surprise have been associated with deception without 
gender divergence [22]. Further, independent of deception, 
research has suggested that there are divergent facial 
expression behaviors in males and females regarding smiling 
and anger [2, 24]. This evidence suggests that the joy and 
anger features should be divergent. 

2) Statistical Findings 
 Table I shows that in the deception dataset, female bluffers 
and truth-tellers differed in expression levels of joy, and 
surprise with uncorrected p-values from the Mann Whitney U 
test of 0.040, and 0.048 respectively. Specifically, female 
bluffers show higher levels of joy with average expression 
levels of 23.1 compared to 18.8 of female truth-tellers. 
Expressions of surprise by females were found to be expressed 
in higher levels by truth-tellers with average levels of 10.7. In 
males, engagement was found to be expressed in higher 
expression levels with an average of 38.6 (p=0.031). It should 
be noted that after Bonferroni multiple test correction, none of 
these p-value are statistically significant [25].  

3) Classifier Performance 
We compare and show our performance findings from the 

GAHL model using joy and surprise as the divergent features, 
a M/F Log. Reg. model, and linear and non-linear models that 
use gender as a feature. Fig. 5 shows the performance results 
for the models explained above in the Methods section, on the 
deception dataset. 

Across the deception results, the GAHL classification 
model performs best once the training set size reaches 25. The 
model’s best performance is with accuracy of 61.5% on the 

test set using a training set size of 66. This is the highest 
accuracy among all the models across all the training set sizes. 
At this same training size, the M/F Log. Reg. achieves 
accuracy of 57.2% and the next closest competitor is the SVM 
model using a polynomial function kernel with gender as an 
additional feature, which achieves an accuracy of 54.1%. The 
largest difference between GAHL and the M/F Log Reg. 
model is also when the training size is 66, with a difference of 
4.3%. Fig. 5 shows the effectiveness of GAHL, when there is 
low data a sweet spot exists where GAHL can perform better 
than all the other models including the M/F Log. Reg. model. 
In this instance the sweet spot occurs once the training set size 
is greater than or equal to 25. From Fig. 5, it can be seen 
clearly that the GAHL model with its divergent features 
outperforms the linear and non-linear models with features of 
emotions and gender included as another feature.  

4) Statistics from Linear and GAHL Model features 
While statistical analysis using the Mann-Whitney U test 

in Table I allow us to view features in isolation, p-values of 
features from the linear models’ weights provides deeper 
insights into the relative importance of features. In this regard 
we consider significance test for each feature in the three 
model configurations: i) a logistic regression model with 
gender as an additional feature, ii) M/F Log. Reg. models for 
males and females, iii) the GAHL model with its associated 
divergent and shared features [20]. 

 
Fig. 4. Comparative Performance of GAHL Model vs. Training Set Size  

Fig. 5. Comparative Performance of GAHL Model with Varying Deception 
Data Set Size. 



                                     
 

 

 
 

In Table II, notice that joy, surprise, and engagement have 
been highlighted among other Affdex features used. These 
features appeared to be significant in at least one of the models 
and so we show it to draw comparisons. We find that none of 
the features are significant when a simple logistic regression 
has been used. In the case of Gender Separated Model where 
the logistic regression was trained on males and females 
separately, surprise and engagement (p-value of 0.016 and 
0.019 respectively) are  significant. For the case of GAHL, it 
is interesting to find that joy_f (joy weights for females), 
surprise_m (surprise for males), and engagement were also 
significant (p-values of 0.03, 0.029, and 0.024 respectively) 

IV. DISCUSSION 
 The results provide several insights regarding both gender 
divergence and deception detection. To a large degree, the 
divergences suggested by the domain knowledge references 
discussed in the introduction are validated not only by the 
performance of the GAHL model, but also in the statistical 
significance of the model weights. The performance curves 
over varying training set sizes in Fig 4 and 5 also highlights 
the importance of models tuned to divergent feature 
complexity in low data set sizes. 

A. Divergent Features 
As mentioned in the Methods section divergent feature 
selection is carried out with a combination of domain 
knowledge and statistical test of difference in the dataset for 
the given features. In the Results section, Table I shows us that 
males and females have differences in expressions of joy, 
engagement, and surprise when they are telling the truth or 
lying. We find evidence that support divergence of joy and 
surprise, but not for engagement. The duping delight theory, 
which suggests increased feelings and expressions of joy in 
deceivers [19,8], is supported in the findings involving female 
witness participants, but not the male participants. The reason 
why the duping delight theory was not shown on average in 
the male participants may lie in the fundamentally different 
expression levels of smiles exhibited among males and 
females [2]. 

 Interestingly, as shown in Table I, only the truthful female 
witnesses express more surprise as identified by [2]. We 

surmise that the majority of data collected by [2] did not 
involve deception, as individuals were voluntarily responding 
to an online video and did not have incentive to be deceptive. 
This is most likely the main reason the data among bluffing 
witnesses does not agree with the findings identified by [2]. 

 In addition to surprise, inner brow raiser has also been 
shown to be associated with fear [2]. However, our statistical 
results did not show any significant divergence in our 
deception dataset between males and females with regards to 
fear. Similarly, anger, sadness, disgust, and contempt also 
showed no statistically significant divergence between males 
and females. Our finding that facial expressions of 
engagement is not divergent among males and females is 
consistent with past literature which identified no differences 
between males and females regarding the facial action units 
associated with engagement (i.e. outer brow raiser (AU2), and 
lip corner depressor (AU15) [2]. 

It is important to note that our findings may be limited to 
the particular cultural demographic of our study participants. 
While Ekman et al. and others have demonstrated pan-cultural 
elements of facial expressions of emotions, studies, such as 
Jack, et al., have also shown exceptions based on culture, 
notably Western and Eastern cultures [29]. Indeed, Ekman et 
al.’s findings even recognized cultural differences in masking 
emotions [28]. However, it should be emphasized that the 
main contribution of this paper is not the particular findings 
with this dataset, but rather the introduction of a hyper-linear 
model that can leverage both divergent and shared features 
between two classes in small datasets. Thus, it is possible that 
some facial expressions are universal across cultures, while 
others are divergent. This invites the application of a modified 
GAHL model in which features are shared and divergent not 
across genders, but across some other group, such as cultural 
groups (such as the Westerner and Easterner groups identified 
by Jack et al.) [29].  Thus, in this paper, we recognize that in 
any given dataset there may be facial expressions which are 
shared (i.e. universal) as well as facial expressions which are 
divergent (i.e. exceptions to universality). We demonstrate 
how our proposed GAHL model, can maximize performance 
by providing limited nonlinear complexity regarding non- 
universal differences when they exist. 

B. Classifier Statistical Tests in Deception Data 
We present significance tests to provide further empirical 

evidence about existence of feature divergence and how 
GAHL was able to leverage that information in its predictive 
ability. This analysis was done on i) a logistic regression 
model with gender as an additional feature, ii) M/F Log. Reg. 
models for males and females, iii) the GAHL model with its 
associated divergent and shared features because they are 
linear in nature and are the top three models in terms of 
accuracy performance on the deception data. 

In Table II, notice that there were no significant features 
from the logistic regression model. It warrants our argument 
about this model being too simple to perform well in the 
complexity that exists in facial expression interpretation in the 
deception dataset. Introducing the M/F Log. Reg. model gives 
us some complexity. Specifically, in the male model, we find 

TABLE II: SIGNIFICANCE OF FEATURES FROM LINEAR MODELS 

Model Feature p-value weight 

Logistic 
Regression 

joy 0.312 -0.090 
surprise 0.553 -0.049 

engagement 0.207 0.075 

M/F Log. Reg.: 
Male 

joy 0.305 -0.394 
surprise 0.016 -1.522 

engagement 0.019 0.864 

M/F Log. Reg.: 
Female 

joy 0.650 -0.059 
surprise 0.803 0.085 

engagement 0.746 0.030 

GAHL 

joy_m 0.312 -0.116 
joy_f 0.030 -0.239 

surprise_m 0.029 -0.304 
surprise_f 0.461 -0.069 

engagement 0.024 0.168 

 



                                     
 

 

 
 

that surprise and engagement are significant features in 
predicting honest and deceptive behavior. Surprise was chosen 
as one of the divergent features for GAHL. While engagement 
showed up to be significant for divergence, we did not find 
enough domain knowledge to confirm its divergence. Hence, 
it is not surprising that the M/F Log Reg. model is relying on 
these features during prediction. Finally, for GAHL, we find 
that both joy and surprise are significant predictors. It is 
significant particularly for joy in females, and for surprise in 
males. Hence, we find both divergent features contributed to 
increasing the complexity of the model. It is also interesting to 
note that engagement which was not a significant feature for 
the simple logistic regression became significant when used as 
a shared feature in GAHL. Engagement has a coefficient  
weight of 0.17 in GAHL which shows that it is associated with 
honest behavior. In fact, engagement’s significance has been 
found to be important in past literature too for deception 
where synchrony or engagement was found to be a major 
factor for honest participants in a dyadic study [21]. 

C. Classifier Performance 
When there is a low data count, the GAHL model is able to 

outperform models that simply include gender as a feature and 
a separate model for each gender. In the model that includes 
gender only as an additional feature, insufficient importance is 
put on the differences between males and females. The two 
separate models for males and females are not able to perform 
as well as the GAHL model when there is a low data count. 
Splitting the data into two distinct groups based on gender 
lowers the training data count even further making it harder 
for the individual models to be trained. Using the GAHL 
model, it allows us to have separate weights for features that 
are determined to be gender divergent. The model also allows 
us to combine features that are shared, or non-divergent 
features. This maximizes the amount of data we can use to 
train a model that will generalize well past the training set.  

We see the difference the data count makes on which 
model will work best in the deception data and the simulated 
data. The GAHL model achieves higher performance 
compared to all the other models for the deception data (N = 
80), as shown in Fig. 4. This adds evidence to the idea that our 
model will be able to perform at its best when there is a low 
data count but will not substantially outperform training two 
different models based on gender when there is sufficient data 
available. Furthermore, the ability for two separate models to 
be able to perform nearly as well as the GAHL model when 
there is sufficient data adds to the argument that there are 
major differences in the expression of emotions between 
males and females. 

D. Non-Binary Gender Data 
In a cross-cultural study, Fontanella et al. found the 

presence of a multi-dimensional gender identity [27]. They 
find that their claims are similar to the general consensus of 
the research community on gender identity theory that there 
does exist fuzzy boundaries between male and female gender 
identities. Our aim is to improve our dataset by incorporating a 
self-identified gender scale that can range between maleness 
and femaleness, that will replace the binary gender data. This 

could be easily incorporated in the GAHL model by using this 
gender scale instead of the binary gender feature as shown in 
Fig. 2. This means that the divergent feature weights will be 
given weighted importance instead of absolute importance that 
is proportionate to the gender scale. 

V. CONCLUSION 
The GAHL model was successfully applied to deception 

detection, demonstrating a clear region of data set size in 
which the performance surpasses that of all other models. 
Perhaps more importantly, evidence of the existence of gender 
divergent facial feature meanings is also introduced. We are 
hopeful that other researchers may use the GAHL model and 
may further benefit from a nuanced approach to investigate 
context-specific facial expression meaning in additional 
domains. We also hope that a model like GAHL can be 
applied to other domains with different gating features such as 
age, instead of gender, where that feature dictates certain 
patterns of differences across other features.  
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