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There are about 900,000 people with Parkinson’s disease (PD) in the United States. Even though there are benefits of early
treatment, unfortunately, over 40% of individuals with PD over 65 years old do not see a neurologist. It is often very difficult
for these individuals to get to a physician’s office for diagnosis and subsequent monitoring. To address this problem, we
present PARK, Parkinson’s Analysis with Remote Kinetic-tasks. PARK instructs and guides users through six motor tasks
and one audio task selected from the standardized MDS-UPDRS rating scale and records their performance via webcam. An
initial experiment was conducted with 127 participants with PD and 127 age-matched controls, in which a total of 1,778
video recordings were collected. 90.6% of the PD participants agreed that PARK was easy to use, and 93.7% mentioned that
they would use the system in the future. We explored objective differences between those with and without PD. A novel
motion feature based on the Fast Fourier Transform (FFT) of optical flow in a region of interest was designed to quantify these
differences in the collected video recordings. Additionally, we found that facial action unit AU4 (brow lowerer) was expressed
significantly more often, while AU12 (lip corner puller) was expressed less often in various tasks for participants with PD.
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1 INTRODUCTION
Over 10 million people in the world are living with Parkinson’s disease (PD) [32], a disease which causes over
29,000 deaths per year [17] and affects around 900,000 people [42] in the United States alone. Shockingly, even
in developed nations like the United States, an estimated 40% of people aged 65 or older living with PD do
not receive care from a neurologist [60]. A large problem in both Western and Asian countries is that many
individuals, around 15% or higher, living with PD have not been diagnosed [44]. Even when diagnosed, PD
requires a continuous process of trying and adjusting medications [57]. A simple online PD symptom screening
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Fig. 1. Users watch a video for each of the tasks. The PARK framework then records the video of the user locally. After
uploading the recorded video to the server, PARK takes the user to the next task.

and assessment application has the potential to identify thousands of undiagnosed people living with PD and
additionally provide individuals being treated with an unobtrusive and objective method for assessment.
However, for several reasons, the development of such a system is not a trivial task. There is currently no

diagnostic test for detecting PD. The symptoms of PD persist over a long period of time and tend to slowly
worsen over several years, making it difficult to identify [31]. These symptoms include upper-limb tremor,
rigidity, bradykinesia, and others. Diagnosis is primarily done through observation and is limited by the potential
subjectivity of the individual conducting the screening. The most commonly used PD drug, levodopa [30],
typically loses its responsiveness over time, requiring continual monitoring of symptoms and adjustment of
the medication [57]. Travel to a medical facility may be particularly burdensome to individuals with PD whose
mobility is significantly compromised. Additionally, it may be hard for neurologists, Parkinson’s nurses or other
trained individuals to compare a patient’s status when only meeting with them once a month or quarter [23].
Further, evaluating individuals with PD in a clinical environment may yield assessments that are significantly
different than their real-world situation. With 89% of adults in the United States using the Internet, either with
home broadband access or smartphone use [18], an online system has the potential to reach a large population
for screening.
This paper discusses the web application framework, titled Parkinson’s Analysis with Remote Kinetic-tasks

(PARK), which collects videos of participants performing vocal and motor exercises and extracts a novel motion
feature for the objective assessment of PD symptoms. PARK is designed for ease of use by individuals with PD.
The development of the system was informed by expert panels and visits to the clinic where participants with
PD tested PARK and provided feedback. The tasks were selected from the Movement Disorder Society-Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS), which is the current standard for assessing PD [29]. An initial
experiment involving a total of 127 users with PD and 127 age-matched users was conducted. Each participant
performed one assessment session that was composed of seven video-recorded tasks taking about 15 minutes
(total of 1,778 recordings). To differentiate the users with and without PD we designed a motion metric feature
from the frequency spectrum of the optical flow of the region of interest in the video frames. The feature identifies
the relative speed of the motor exercise and further characterizes the participants with PD with significance
(p<0.05). Additionally, facial action units were extracted using the off-the-shelf feature extraction tool Openface
[7]. These features revealed that average eye brow-lowering muscle contraction was higher, while maximum
smile intensity was lower among participants with PD.
In this paper, we make the following contributions:

• Development of an online framework which explores the feasibility of the remote assessment of PD using
a standard webcam and microphone.

• Design and validation of a novel video analysis algorithm to measure a motion metric which identifies
differences between participants with and without PD.
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Individuals at varying stages in their disease progression were recruited, and the majority were in treatment. The
goal of this work is to detect differences between the two groups in the selected measurements, and to test the
usability of the system.

2 BACKGROUND

2.1 Traditional Diagnosis of Parkinson’s Disease
In the health care field, trained individuals commonly determine the severity of PD using the Movement Disorder
Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), a scale with 65 items answered on a five-point
scale and a total range of 0-260 points [33]. This rating scale was developed as a revision of the original Unified
Parkinson’s Disease Rating Scale [29]. In the motor examination of the MDS-UPDRS, trained individuals are
instructed to observe a series of physical exercises and “rate what they see” based on a set of evaluation criteria.
For each exercise, they assign an integer score to the observed motor movement from 0-4 (normal - severe).

Applications that provide objective monitoring of PD are an important solution to the limitations of in-person
ratings. There is a need for more sensitive motor assessments that decrease the inter-rater variability between
trained individuals. For those with PD in the United States, medication costs them, on average, $2,500 a year [32].
Without precise feedback, individuals with PD could be spending money on medication that might not work for
them. In countries where medical costs are not paid out of pocket, travel and time costs are still a factor, and the
medical expenses remain a burden for government health care. The subjective rating of symptoms not only has
financial implications, but it can cause over-medication which leads to negative side effects. Furthermore, the
majority of seniors do not own a smartphone, while half of seniors have high-speed internet at home, [3] and it
is likely that a web application could serve the needs of this population group. An online framework is a feasible
way to collect videos and provide assessments [20].

2.2 Computer-Aided Systems and Methods
Past work has identified novel approaches to differentiate between healthy individuals and those with PD. Audio
recordings of phonations have been used to distinguish between these two groups [39]. Individuals living with
PD have been found to have speech that is softer, less distinct, and has less rhythm, stress and intonation [41].
Several studies have investigated the characteristics in facial expressions of those with PD. The low intensity of
facial expressions associated with PD has been described as a “mask”-like expression [53] and has been found
in both posed and spontaneous expressions [8, 35, 61]. This lack of facial expressivity is consistent with the
neurological damage of PD [8]. Additionally, specific characteristics of PD facial abnormalities include a wider
palpebral fissure (i.e. eyelids wide open), a reduced blink rate, non-distinct nasolabial folds, and an open mouth
[13].

An experimental practice in the diagnosis of PD is the use of smartphone applications andwearable technologies,
such as ParkNosis [48] and PERFORM [54]. These systems provide the convenience of being able to receive
feedback at home without visiting the doctor’s office. Self-monitoring health technologies, such as smartphone
applications, have been successful in differentiating between individuals with PD and those from an age-matched
control group [5, 6], determining and validating severity scores [46, 62] and detecting responses to medication
using quantified measures [63]. Various methods have been proposed for gathering data from remote interfaces
[27]. In one smartphone application, participants performed five tasks that assessed voice, posture, gait, finger
tapping and response time [6]. The capabilities of wearable sensors have been leveraged for PD diagnosis [16], and
often studies have employed accelerometers to identify and measure tremors. For example, the use of gyroscopes
to detect and objectively quantify tremors and bradykinesia was validated on a set of individuals with and
without PD [49]. Outside the use of sensors, [55, 56] analyzed the rhythmic movements of body parts from video
data using the time-domain and frequency domain spectrum, producing results comparable to accelerometer
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generated data. It has been found to be feasible to engage a large number of individuals with PD using remote
monitoring [15, 46, 63].

The “digital divide” serves as a geographic and social barrier that limits the access of older groups, and groups
with more chronic conditions, to telemedicine [21, 22]. The majority of seniors do not own a smartphone [11].
The use of a smartphone or wristband may require visits to the hospital where they are given and equipped
with these technologies. Additionally, seniors, over the age of 65 and living in the United States, who have less
education and a lower household income are much less likely to use technology [3].

Even when access is provided, prior research has identified that older individuals still have difficulty with online
technology [10] and can benefit from customized interfaces [2]. In terms of providing care via video-conferencing,
instead of smartphone-based collection, it has been found to be feasible. But there can be issues with the sound
and quality of videos if there is a low connection speed [1]. Despite this, individuals with PD may prefer virtual
visits to in-person appointments [9]. Video-conferencing with individuals with PD in their homes was found
to improve convenience, comfort and saved time [9]. To our knowledge, there is no direct comparison of the
experience of individuals with PD with smartphones versus video-calling applications, like Skype. But past work
has indicated that web-based applications are a viable and well-received solution [20]. This is a relatively new
field and it could be beneficial to explore multiple solutions, both web-based and smartphone-based.

3 PARK SYSTEM
In this section, we describe the development process for the system. First, we discuss the tasks we selected from
the motor exercises in Part III of the MDS-UPDRS. We then describe the online interface we built and the design
considerations. Lastly, we describe a set of survey questions we used to gather information from participants
about their experience using the system.

3.1 Task Selection
The MDS-UPDRS combines a quantitative and qualitative approach to assessing PD. Part I and II examine the
non-motor and motor experiences of daily living, Part III contains the motor examination, and Part IV examines
motor complications. From the motor assessment in Part III of the MDS-UPDRS, we have selected six tasks for
the PARK system. These six exercises are related to the severity of PD motor symptoms, such as upper-limb
tremor, rigidity, and bradykinesia. Despite the subjectivity of the MDS-UPDRS, [43] determined severity levels of
PD based on MDS-UPDRS scores from all the sections.

In order to analyze facial expressions, while both talking and not talking, two separate tasks (Task 1 and Task
2) were introduced. In the MDS-UPDRS, speech is rated by observing unstructured conversation. In contrast, we
chose to have participants read a specific sentence to standardize the task for future analysis. Task 7, the vocal
task, is not from the MDS-UPDRS, but it has been used in well-known PD research [38]. The following motor
tasks were chosen considering the feasibility of self-recording with a webcam.
(1) Task 1: Resting Facial Expression
(a) Requirements: Participant is recorded sitting still for 10 seconds.
(b) Evaluation criteria: Observe eye-blink frequency, masked faces (stiff facial expression), and parting of

lips.
(2) Task 2: Speech
(a) Requirements: Participant is recorded while reciting the sentence: “the quick brown fox jumps over the

lazy dog. The dog wakes up and follows the fox into the forest, but again the quick brown fox jumps over the
lazy dog.”

(b) Evaluation criteria: Observe volume, modulation, clarity, slurring, repetition of syllables, and rapid
speech.
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(a) Task 3: Finger tapping (b) Task 4: Hand movements

(c) Task 5: Pronation-supination movements of hands (d) Task 6: Postural tremor of the hands

Fig. 2. Screenshots of selected motor exercises from the MDS-UPDRS.

(3) Task 3: Finger Tapping
(a) Requirements: Participant taps index finger and thumb together 10 times, done for both hands.
(b) Evaluation criteria: Observe speed, amplitude, decrementing amplitude, hesitations, and halts. Depicted

in Figure 2a.
(4) Task 4: Hand Movements
(a) Requirements: Participant keeps arm bent and makes a tight fist, then opens the hand 10 times as fully

and as quickly as possible, done for both hands.
(b) Evaluation criteria: Observe speed, amplitude, decrementing amplitude, hesitations, and halts. Depicted

in Figure 2b.
(5) Task 5: Pronation-supination Movements of Hands
(a) Requirements: Participant extends an arm out in front of their body with their palm down, then they

turn the palm up and down 10 times as fast and as fully as possible, done for both arms.
(b) Evaluation criteria: Observe speed, amplitude, decrementing amplitude, hesitations, and halts. Depicted

in Figure 2c.
(6) Task 6: Postural Tremor of the Hands
(a) Requirements: Participant extends both arms out in front of their body with their palms down, for 10

seconds.
(b) Evaluation criteria: Observe the highest tremor amplitude for each hand. Depicted in Figure 2d.

(7) Task 7: Voice task
(a) Requirements: Participant is recorded saying “ahh” for as long as possible.
(b) Evaluation criteria: Observe vocal tremors and breathiness. This is a sustained phonation, when a single

vowel is produced and the pitch is held for as long as possible.
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3.2 User Interface Design
PARK is designed for people with PD and those at risk of the disease. In designing PARK, an expert panel of four
neurologists at the University of Rochester Medical Center was consulted. One neurologist walked through the
prototype at different stages of development in several meetings. During open discussions, the neurologist noted
what was working well and potential improvements. Additional feedback on the selection and modification of
the tasks was gathered remotely via email and in the clinic from the remaining neurologists.

In the initial stages of the system’s development, we gained important insights from two pairs of participants
with PD and their caregivers during clinic visits. This work was done in collaboration with the neurologists and
a research coordinator. During two clinic visits, both the person with PD and their caregiver were given a short
introduction about the project after their appointment concluded. They were then observed as they navigated
through the system. When they had a question or were stuck, we stepped in to explain. After they finished
the survey, we openly discussed their impressions of the system. Their responses were recorded in writing
immediately following the visit. It was observed that one of the participants had trouble with their eyesight and
difficulty concentrating. Though the instructional video said to stop at 10 taps in Task 3, they had to be told
verbally when to stop. Another participant mentioned that the video instructions were not necessary because
they were familiar with the tasks, though they acknowledged that the videos helped them focus and they might
not have paid attention otherwise. The conclusion from this feedback was to continue using instructional videos
and to make each step of the process more visible and clear. Following the clinic visits, we developed a set of
guidelines for the design of PARK.

As those diagnosed with PD tend to be part of an older demographic, we reviewed relevant literature and found
that our guidelines were in line with past work on design for older adults. In a study of 125 websites offering
health resources, [10] evaluated the ability of the homepage designs to meet the needs of older users based on
guidelines set by the National Institute on Aging and the National Library of Medicine [45]. As humans age, they
experience a decline in vision, cognition and physical skills and [10] proposed that all these should be addressed
by web design. Many of their suggestions are in line with the established W3C guidelines [4] regarding text,
color and contrast, and multimedia captions. The W3C guidelines additionally supplemented that it is important
to limit distractions, time restraints and mouse use, and instead promote keyboard use.

Building on this knowledge, our objective was to design an accessible and convenient interface for people with
PD and older adults. Based on our discussions with neurologists and literature review the following guidelines
were determined.

• The tasks should not require help from another person or caregiver.
• The tasks should not require the users to stand up or walk.
• The interface should give clear instructions on how to complete the tasks.
• The interface should include both audio and visual instructions.
• The interface should allow the users to easily navigate with few clicks.
• The interface should allow the users to retake their video.

Using these guidelines, sans serif fonts and large buttons were selected, subtitles were added to the videos,
and black text on an off-white background was used for visual clarity and simplicity. We used Arial font for
the main content of the website, as well as Questrial and Helvetica Neue fonts for page titles, navigation and
footer content. The font sizes were at least 16px, which is the equivalent of 12pt. For clear cognitive navigation, a
contact email was listed at the bottom of each page to provide assistance. There were only two pages listed in
the navigation bar: the homepage and the about page. The about page served as the help feature and contained
contact information, a privacy statement, details about the study, and a link to download Google Chrome.

Our goal was to have a simple and clear interface where a user would be taken step by step through the voice
and motor exercises. Following each instruction page, the user is required to watch a video of an individual
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completing the exercise. Once the user has finished watching the example video, they can begin recording
themselves (see Figure 1). To reduce difficulties that may be caused by motor impairment, users were able to
progress through the pages either with a mouse click or the space bar. Once the user has completed all of the
exercises, they are taken to a demographic survey and feedback form with Google’s Speech Recognition API
enabled. The web application is hosted on a remote server and utilizes the RecordRTC JavaScript library [36] for
uploading submitted videos. At this point in time, participants do not receive feedback on their videos. Figure 3
shows a vision of a future PARK use case with a flowchart of the system.

3.3 Survey
We administered a survey at the end of the video collection in the PARK system. The survey consisted of
demographic questions, as well as ten feedback questions. For the feedback survey questions, participants
responded on a five-level Likert scale (i.e., 1 = “strongly disagree,” 2 = “disagree,” 3 = “neither,” 4 = “agree,” and 5 =
“strongly agree”).

Table 1. Feedback survey questions.

1. The web application was easy to use.
2. I understood all the instructions for performing the tasks.
3. I would like to use the system in the future.
4. I had no problem browsing through the system.
5. The videos shown in the interface were helpful.
6. I knew how to perform the tests beforehand.

Table 2. Feedback discussion questions.

1. What did you like most about the web application?
2. What did you like least about the web application?
3. What did you like the most about this study?
4. What suggestions would you make to improve this study?

Fig. 3. Vision of PARK System flowchart.

4 AUTOMATED ASSESSMENT ENGINE
An automated assessment engine was developed to collect video data and to extract features potentially corre-
sponding to motor symptoms of PD. We based the development of our assessment methods off of past researchers’
success in demonstrating differences in facial expressions and motion features.

4.1 Facial Features
Through the use of automated facial expression extraction, we sought to quantify the differences in facial
expression for each of the tasks between individuals diagnosed with PD and the control group. The Facial Action
Coding System is a well established system of objectively representing the magnitude of facial contractions for a
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Table 3. OpenFace Facial Action Coding System (FACS) features.

AU Description Expected Observation AU Description Expected Observation
AU1 Inner brow raiser decrease AU14 Dimpler less spontaneous

smiling
AU2 Outer brow raiser decrease AU15 Lip corner depressor -
AU4 Brow lowerer increase AU17 Chin raiser -
AU5 Upper lid raiser - AU20 Lip stretcher -
AU6 Cheek raiser decrease AU23 Lip stretcher lip tightener
AU7 Upper lid tightener - AU25 Lips part lips parted greater
AU9 Nose wrinkler decrease AU26 Jaw drop -
AU10 Upper lip raiser decrease; less promi-

nent nasolabial folds
AU28 Lip suck -

AU12 Lip corner puller less spontaneous
smiling

AU45 Blink decreased eye-blink
frequency

number of dimensions called facial action units (“AUs”) [25]. Each facial action unit roughly corresponds to a
major facial muscle group. We used the OpenFace tool version 2 [7] for automatically extracting the commonly
used facial action units shown in Table 3. Openface has been shown to have good AU level correlations when run
on a set of expert labeled public facial expression databases, with an average correlation of 0.73 over all AUs [7].
We configured OpenFace to run on our PARK server and extract AU features from the webcam videos as they are
uploaded.

As discussed in the Background section and summarized in Table 3 the “Expected Observation” column, prior
research has identified several ways in which facial expressions in individuals with PD deviate from healthy
individuals. Facial features were analyzed in every task since we conjectured that the facial features would be
affected differently by the given tasks. Each of the tasks evaluates a different type of manifestation of motion
disorder. The physical exertion levels evaluated include the following: at rest, static exertion (hold still), and
dynamic exertion for fine movement, (index finger-thumb), medium-scale movement (hand), and gross motor
movement (arm). Facial expressions were analyzed in each of these scenarios since our common experience
found that individuals often make a non-neutral facial expression when they concentrate on a task.

4.2 Motion Features
In addition to facial expression analysis, we sought to measure differences in hand motion between the group
with PD and the control group in Tasks 3-6. Due to the limited video quality of the data, it was not possible
to track individual finger movements reliably. More specifically, some of the videos involved individuals who
moved their hands into and out of the camera view. Even though the video was configured to capture high quality
frames, due to limited recording bandwidth on participant machines or poor lighting, the video surrounding
moving fingers was often blurred. Participants were asked to perform 10 cycles per hand in each task, however,
in many cases slightly more or less cycles were performed. In summary, the algorithm we developed was based
on actual data gathered in the wild in contrast to idealistic laboratory conditions. We focused on the development
of a motion feature with the following characteristics:

• The metric should not highly depend on the number of motion cycles performed (i.e., the number of finger
taps).

• The metric should not drastically suffer if the individual’s hand temporarily moved off the screen.
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Fig. 4. Algorithmic steps for calculation of motion magnitude metric.

• The metric should not deteriorate with slight to medium differences in hand orientation or distance relative
to the webcam.

• The metric should not be corrupted from nonperiodic background movement.
• The metric should produce discernible differences between the group with PD and the control group.

After experimentation, we developed a methodology to estimate the maximal motion frequency in a region
of interest. Our method combines the computer vision method known as optical flow with motion frequency
analysis. To this end, we implemented the Farnebäck algorithm in OpenCV version 3.1.0 in C++. Optical flow
involves calculating the frame to frame direction and magnitude of movement. In performing this calculation,
the video is divided into a grid of separate regions. The direction and magnitude of movement is then calculated
separately for each region for successive frames [28]. In addition to optical flow, we used Fourier analysis to
determine the frequency of extracted motions in the participant videos [52]. The steps for calculating the maximal
motion frequency (“motion metric”) for each participant video are detailed in Algorithm 1 and shown in the first
three steps of Fig. 4.
Starting with our video files, which were of a fixed resolution (640 × 480), we applied the steps in Fig. 4 to

yield a single scalar motion metric value for each video file. As shown in step 1, optical flow is calculated for each
grid point (i.e., green dots in Fig. 4-1) between two successive video frames. In summary, the x and y motion at
each grid point is estimated between the previous and current frames. In step 2, the motion at each grid point is
clustered into a low and high speed group using k-means clustering. In step 3, the region of interest is calculated
as the minimum sized rectangular bounding box that contains all of the grid points in the high speed cluster. The
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Algorithm 1: Process video to return the motion metric, a.
Result: File containing average motion magnitude per frame
———————————-
Definitions
f rame = matrix of video pixels
F = optical flow vector matrix for I × J regions
M = magnitude scalar matrix for I × J regions
L = cluster assignments of I × J elements inM by k-means = 0,1
B = bounding box of region of interest
A = array of motion per frame, in the region of interest
———————————-
START
t = 0;
last f rame = capture next video frame;
f rame = capture next video frame;
repeat

F = calculate Farnebäck Optical Flow (last f rame, f rame);
initializeM sizeof F ;
forall fi, j ∈ F do

mi, j =
√
fi, j .x2 + fi, j .y2;

end
L = k-means (M ,k=2), where,

cluster 0 = lower magnitude;
cluster 1 = larger magnitude;

B = minimum rectangular subset of [I × J ] which includes all of cluster 1 elements;

A[t] =

∑
mi, j ∈B mi, j

|B |
;

last f rame = f rame;
t = t + 1;

until no frame exists to read;
a = arдmax(FFT (A));
———————————-
OUTPUT
motion metric, a.

average motion of all the grid points in the bounding box is calculated, yielding a single value for the current
frame. This process is repeated for all the frames to produce a time series signal of average speeds in the bounding
box of each frame. In step 4, the Fourier transform is taken of the speed vs. time signal. In step 5, the frequency of
motion which has the maximum energy is identified, and is returned as the motion metric for the given video file.
The variables used in Algorithm 1 are defined as follows. F is the optical flow matrix that is unique to each

frame with IxJ grid points. Each grid point fi, j has an associated x and y value representing horizontal and vertical
components of the estimated motion. M is a matrix of scalar magnitudes (i.e. speed) of each grid point with
identical dimensions to F . L is a matrix of the same dimensions as F that has values of 0 and 1, representing the
grid points’ cluster assignments. B represents the minimum bounding box of grid points in the high magnitude
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Fig. 5. Participants with background motion. On the left, the participant’s hand is detected during the task, and after a
person is detected in the background. On the right, the participant’s hand is detected, and after they adjust their webcam
with no detection.

cluster. A is the motion magnitude time series that represents each frame’s estimated motion magnitude in the
region of interest.
Algorithm 1 starts with the time t = 0, last f rame capturing the first frame, and f rame capturing the second

video frame. The optical flow between last f rame and f rame is calculated and loaded into F . For each coordinate
(i.e. grid point i,j), we calculate the optical flow vector magnitude and load it into M . These values represent
the estimated speed of motion for each grid point. All of the grid points are then clustered, according to their
magnitudes inM , into either a low magnitude cluster or a high magnitude cluster. The cluster assignments are
calculated using the k-means algorithm and stored in Boolean matrix L. The boundary that encompasses all the
regions in the high speed optical flow cluster group is calculated to define our region of interest as bounding box
B. B includes all elements in the high magnitude cluster and likely some elements in the low magnitude cluster.
The average magnitude over all elements in bounding box B is then calculated and stored in A[t]. This process is
repeated for each subsequent frame.
In calculating the boundary box, k-means clustering was used as a more robust method than a static speed

threshold. More specifically, a static threshold would not be able to as robustly handle situations in which
a participant’s hand changes in distance from the camera. The k-means algorithm sets the speed threshold
dynamically by automatically adjusting for different participant positioning.

The boundary box normally included the regions that we were interested in, namely the hands and arms. But,
in some cases (e.g., if someone was adjusting their webcam), the whole body would be included. Additionally, if
there was background motion, it would sometimes be included in the boundary box as well. This occurred when
the motion was significant and not distant from the webcam. In Figure 5, the boundary box surrounds the hand
motion as the task is performed. In the case of the first participant with PD, on the left, a person is walking in the
background and is included once they begin to quickly move off screen. On the right, the second participant with
PD adjusts their webcam after the task, but it is done slowly and the motion is not included.
After Algorithm 1 has completed and returns A, the time series of average motion magnitudes inside the

region of interest, the Fourier transform is taken. This transformation was then normalized by the length of
the transformed values in order to put all data points into a consistent frequency domain. From the frequency
domain signal, the frequency with maximum amplitude is returned as the motion metric for the given video.
These steps were performed in order to obtain a metric focusing on dynamic movement characteristics in the
region of maximum movement that is resilient to spurious (i.e., less energetic) movements.

5 ANALYSIS AND RESULTS
In this section we present the results from the survey and the extracted features. We present initial findings on
facial and motion features that are expressed differently for the two participant groups in specific tasks.
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Table 4. Baseline Characteristics.

Characteristic No. (%)
Participants With
Parkinson’s Dis-
ease (n=127)

Participants With-
out Parkinson’s
Disease (n=127)

Age, mean (SD) 62.4 (7.4) 62.1 (7.2)
Women 60 (47.2%) 85 (66.9%)
White race 117 (92.1%) 106 (83.5%)
College graduate 110 (86.6%) 88 (69.3%)
Previously used video callinga 96 (81.4%) 79 (75.2%)
Previously used automated PD analysis 51 (40.2%) NA
Taking levodopa 72 (56.7%) NA
Taking sinemet 18 (14.2%) NA
Years since diagnosisb , mean (SD) 6.9 (5.7) NA
MDS-UPDRS score, mean (SD)

Modified motorc (range 0-24) 9.9 (3.2) NA
a 96 out of 118 participants with PD, and 79 out of 105 participants without PD that answered
this question.
b Excluding one participant that did not correctly enter their year of diagnosis.
c Including motor assessment of Part III: 3.1 Speech, 3.2 Facial Expression, 3.4 Finger Tapping,
3.5 Hand Movements, 3.6 Pronation-supination Movements of Hands, and 3.15 Postural Tremor
of Hands for 20 randomized participants with PD.

5.1 Data Collection
There was a total of 127 participants with PD and 127 age-matched participants. Their characteristics are shown
in Table 4. Participants were recruited in-person during scheduled clinic visits, at PD support group meetings,
and online. The study had IRB approval and, if they selected to, participants could receive $50 Amazon gift cards
for their involvement.
We recruited three medical doctors with MDS-UPDRS certification to rate the videos. Two of them rated the

videos of 10 randomized participants and the other rated a different set of 10 random participants to determine
MDS-UPDRS scores. The certified raters conducted a motor assessment from Part III: 3.1 Speech, 3.2 Facial
Expression, 3.4 Finger Tapping, 3.5 Hand Movements, 3.6 Pronation-supination Movements of Hands, and 3.15
Postural Tremor of Hands, of the MDS-UPDRS. Accordingly, each video was rated on an integer scale from 0 to 4.
Since it would be time intensive to rate all the videos for 127 participants with PD, only 20 randomly selected
participants with PD were chosen for their videos to be rated. We did not evaluate the Hoehn & Yahr scores [34]
because measuring balance impairment in-person is integral to the rating, and this was not feasible in our study.

5.2 Facial Feature Results
We compared an age-matched control group (n=127) to a group of participants with PD (n=127) for our analysis
of facial features over all the video frames for each task. Three participants were left out of the facial feature
analysis due to low confidence scores in OpenFace for all of their video frames (i.e., using an OpenFace confidence
level of 75%). Analysis of our data revealed two differences between the groups with and without PD. Shown in
Table 5 are the differences in AU expression frequencies between the groups among the tasks sorted by increasing
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Table 5. Observed differences between the groups with and without PD.

AU task # PD mean Control mean std. dev. p-value corrected
p-value (x224)

AU 4 avg task 1 1.23 0.841 0.782 5.51 e-5 0.01
AU 4 avg task 5 1.108 0.842 0.731 0.005 > 1
AU 4 avg task 3 1.177 0.954 0.789 0.008 > 1
AU 4 avg task 4 1.147 0.905 0.763 0.009 > 1
AU 4 avg task 2 1.220 0.993 0.788 0.020 > 1
AU 4 avg task 6 1.078 0.857 0.772 0.023 > 1
AU 4 avg task 7 1.270 1.117 0.844 0.163 > 1
AU 12 max task 5 0.646 0.935 0.640 2.29 e-4 0.05
AU 12 max task 7 0.456 0.813 0.762 0.001 > 1
AU 12 max task 6 0.439 0.646 0.595 0.003 > 1
AU 12 max task 4 0.527 0.806 0.687 0.003 > 1
AU 12 max task 1 0.351 0.525 0.600 0.016 > 1
AU 12 max task 3 0.421 0.607 0.628 0.036 > 1
AU 12 max task 2 0.535 0.686 0.617 0.037 > 1

Mann-Whitney U-test p-value. In the “corrected p-value” column are the p-values that have the most aggressive
Bonferroni multiplier applied to consider the effects of multiple hypothesis testing. We used a correction factor
of 224 ([# AUs]x[# tasks]x[# metrics] = 17x7x2). As shown in Table 5, the average AU4 (“brow lowerer” muscles,
corrugator supercilii and depressor supercilii) shows a substantial difference between the groups, with the group
with PD demonstrating significantly greater average expression of AU4. This difference was most pronounced in
Task 1 (Resting Facial Expression). The Mann-Whitney U-test p-value is 0.012 after Bonferroni correction. While
Tasks 2-6 also show greater AU4 averages, their level of difference does not meet significance at 95% when using
Bonferroni correction.

In Table 5, the group with PD had lower maximumAU12 (lip corner puller) on average during Task 5 (Pronation-
supination Movements of Hands). This effect is also shown, but to a lesser degree, in the other tasks. None of the
other facial expression action units listed in Table 3 showed statistically significant differences (at 95% confidence)
between the group with PD and control group.

5.3 Motion Feature Results
The Tasks 3, 4, 5, and 6 are related to hand movements. All 127 participants with PD and 127 age-matched control
participants were included in this analysis. Figure 6 compares differences in the motion metric between the groups
with and without PD. All tasks, except for Task 6 (Postural Tremor of the Hands), show significant differences.

In the other three tasks, the group with PD had a mean frequency that is lower than the control group (p < 0.05).
All the following values represent themean(std) of people with PD vs. themean(std) of the controls: Task 3
0.11(0.13) vs. 0.13(0.14), Task 4 0.12(0.13) vs. 0.16(0.15), and Task 5 0.10(0.11) vs. 0.14(0.15). This may indicate that
the participants with PD have relatively slower hand movements than the participants without PD. It is possible
that Task 6 (0.06(0.09) vs. 0.06(0.10)) is not significant because the hands tend to be too close to the camera and
fill the entire screen, or go outside of the frame. One neurologist who rated the videos said that some of the
exercises, specifically noting Task 6, were tough to see on screen because of these tendencies. Additionally, Task
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(a) Task 3: Finger tapping (b) Task 4: Hand movements (c) Task 5: Pronation-
supination

(d) Task 6: Postural tremor

Fig. 6. Boxplot of the frequencies with maximum magnitude

Table 6. Pearson correlation coefficients of task average MDS-UPDRS rating and motion metric.

Task 3 Task 4 Task 5 Task 6
MDS-UPDRS Rating 0.313 0.070 0.235 -0.235

6 is different than the other three hand movement tasks since it requires the participants to hold their hands still.
This fundamental difference in the nature of the tasks may have been reflected in the motion metric.

In past work, [59] were able to generate scores for hypomimia that were correlated to UPDRS ratings of PD
symptoms. Similarly, to validate our motion feature, we calculated the Pearson correlation coefficients for the
motion metrics and neurologist given MDS-UPDRS scores for Tasks 3, 4, 5, and 6. We have selected the videos of
20 random participants for each of the tasks and had three MDS-UPDRS trained medical doctors assign scores.
The videos of the first 10 participants were rated by two doctors and the average score was used for the correlation
analysis. The remaining 10 participants were rated by one doctor. For Task 6, only 19 participants were analyzed
as one participant was not rated because they performed the task incorrectly. The coefficients are shown in Table
6. While the motion metrics from Tasks 3, 4, and 5 have a positive correlation with the MDS-UPDRS scores, there
is a negative correlation with Task 6, in which individuals are holding their arms stationary. As a reference, the
correlation between the ratings of the two doctors was 0.75. Additionally, the average Cohen’s Kappa values
between the two doctors was 0.37 (Task 1 = 0.125; Task 2 = 0.0741; Task 3 = 0.375; Task 4 = 0.697; Task 5 = 0.1667;
Task 6 = 0.8039). It should be noted that the correlation and Kappa measures were calculated on a small subset of
the dataset (i.e., only 10 videos) and thus might not generalize well.

As a validation of the resilience of the motion metric, we created 30 test videos of a single individual performing
Task 3 (Finger Tapping) with various simulated “quality issues.” More specifically, five test videos were recorded
for each of the six scenarios outlined by our characteristics to evaluate Algorithm 1’s performance. Namely,
this includes Test 1 (baseline video with 10 taps per hand), Test 2 (five taps), Test 3 (fifteen taps), Test 4 (each
hand moves off screen for one second), Test 5 (increased distance of 2 ft. from the webcam), and Test 6 (presence
of person walking in background). The variance of the motion metrics in Table 7 is 8.4e-3 which provides a
measurement of the resilience of the motion metric in various unideal scenarios.
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Table 7. Motion metric of the finger tapping task on different scenarios.

Test Motion Metrics
Test 1 Test 2 Test 3 Test 4 Test 5

Baseline 0.109 0.031 0.033 0.048 0.034
Five taps 0.024 0.244 0.049 0.045 0.045
Fifteen taps 0.024 0.029 0.028 0.014 0.238
Hand off screen 0.061 0.031 0.076 0.074 0.031
Increased distance 0.037 0.053 0.018 0.018 0.018
Noisy background 0.188 0.065 0.032 0.452 0.034

5.4 Survey Results
In their survey ratings in Figure 7, 90.6% of the participants with PD agreed that PARK was easy to use, and 93.7%
agreed that they would use the system in the future. 93.7% found the use of instructional videos helpful and 94.5%
agreed that they understood all the instructions. To this end, many of the participants with PD were already
familiar with the MDS-UPDRS exercises (82.7%). For those who were not familiar with the tasks (22 participants
with PD), 16 of them agreed that it was easy to use and that they understood the PARK instructions. There were
16 of participants with PD (12.6%) that did run into some sort of problem when using the system. For example,
they had problems with set up (e.g., they had to change their browser from Internet Explorer to Chrome) (n=4),
the interface itself (e.g., the survey did not highlight which specific question they missed, or they could not read
text on the screen)(n=2), camera adjustment (n=3), difficulty typing (n=1), and slow internet connection (n=1).
There were some who agreed that they ran into problems, but they did not provide a written response (n=5).

For the written discussion responses, the majority of participants with PD opted to give more detailed feedback.
Written responses were obtained from 112 of the 127 participants with PD. A large percentage, 50 out of the 112,
mentioned that they liked the system’s “ease of use.” In responses that did not directly discuss ease of use, other
topics included the enjoyment of using the technology (n=6), the “ability to do it at home” and by themselves
(n=21), and the desire to use the system more often to track their symptoms (n=6).

For the thematic analysis, the 112 written responses of participants with PD were used as content. We
approached our thematic analysis by looking at the explicit content and the assumed reality of the data set. We
determined 15 labels that were used to code the responses: personal assistance, unfamiliar technology, enjoyable
technology, helping research, desire for options, privacy, physical difficulty, home use, self-paced, insecurity, easy,
quick, curiosity, understandable, interface problems. Based on this coded dataset, we defined six themes:
(1) Technological issues and limitations: In the prototyping stage, topics about improvements to the web

framework were discussed after participants completed the study. In this initial stage, a participant might
need help orienting themselves in the recording frame, or with moving closer and farther from the camera
depending on the task at hand. One participant made a suggestion to limit scrolling. A technological
limitation with prototyping was that participants were using our laptops, which in most cases were Macs,
and were unfamiliar with how to navigate. For example, one participant mentioned that they disliked “using
a mac” and another wanted help with “how to understand and use the computer technology if unfamiliar
e.g. apple.” This issue became less of a concern outside of prototyping because participants were using their
personal computers. But it is important to note that participants still ran into trouble with various issues
when we deployed the study online (n=13). For example, some participants had difficulty when enabling
their microphone or when their default browser did not support video recording capabilities.

(2) Ease of use: The ease of use of PARK was the most common theme (n=50). Participants found that it was
easy and convenient because the instructional videos were straightforward and short, and the standardized
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tasks were familiar. As one participant noted, it was “quick and to the point. videos were not too long.”
The text instructions were aided by visual examples of the tasks. It is also likely that many wrote that it
was “easy” because they could do it in any environment and did not have to travel to meet with a trained
professional. Also, it was a only a short selection of tasks from the MDS-UPDRS.

(3) Personal agency: There was a number of participants (n=26) who appreciated that they had more control
over where and when they participated. They could record task videos at home, at their own pace, and
did not have to travel to the doctor’s office. It appeared that participants were interested in additional
personal agency within the framework as well. They were curious about the research direction and how
the study would measure changes in symptoms. They looked forward to continuous use of the system. One
participant said that, “I hope I can use some day to help evaluate how medicines are working. Instruction
video optional if able to use on a regular basis.” They expressed a desire to skip over the video instructions
if they were able to use the system more often.

(4) Supportive environment: Conversely, for those who participated in the clinic or in a PD support group, the
help and personal assistance was appreciated (n=2). One participant commented that the “people were
nice to work with.” Participants were always positive about their experiences when support was present.
Another participant said that the exercises were simple, but it took some getting used to. They completed
the tasks at home and had physical difficulty with the system, saying that they “had to sit to[o] far away
from computer so my arms got tired.” There is less emphasis on personal agency in cases like this one
(n=4). Perhaps, as a future use, it could be beneficial to optionally introduce the PARK system in the clinic
setting with the support of a trained administrator. After being familiarized, the user could then use it at
home or another location following the visit.

(5) Comfort on camera: A less prominent theme was how comfortable participants felt recording videos of
themselves (n=4). Some felt comfortable and trusted the security of the data, and one liked that it was a
private and non-invasive process. Another enjoyed using the technology and said, “It’s fun to watch myself
though I didn’t get my hands in the video very well.” On the other hand, one participant said they disliked
“seeing myself on camera,” and seemed to feel less confident and anxious about self-recording.

(6) Internal incentives: When participants touched on what they liked about PARK, and the study’s strengths,
they expressed inner motivations for their involvement (n=13). In one response, an individual said, “Happy
to participate and move you forward. I like the concept of technology use,” and another said they liked
“playing with the computer to provide feedback for research.” The enjoyment of using new technology and
the desire to help were often tied together. Participants appreciated that the study was helping to further
PD research because its purpose was aimed towards a cause important to them. Interestingly, those who
showed internal incentives were likely to show more than one.

6 DISCUSSION
Why does the group with PD show lower maximum AU12 expression? This finding is consistent with several prior
studies and serves to validate the overall utility of the PARK system. Generally, facial expressions of those with
PD are marked by a decreased level of movement in the lower face [14, 50] with some exceptions including AU10
(“upper lip raiser”) [50]. [14] found decreased levels of expressivity in individuals with PD for several action units,
including AUs 6, 9, 10, 12, and 15. Other observed behavior in individuals with PD includes less spontaneous
smiling [51] and lips parted while the mouth is at rest. [47] found patients with PD were significantly less able to
express posed happiness. Similarly, [8] found a significant reduction in mean facial expression distance between
participants with and without PD during acted expressions of happiness. Smiling is often associated with AUs 6,
7, and 12. Therefore, we would expect to see lower values for these AUs. Part of the reason why the difference
in AU12 is significant only in Task 5 could be due to the relative magnitude of physical exertion in each of the
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Fig. 7. Average ratings and standard deviation of the survey responses of participants with PD. The questions are available
in Table 1.

tasks. Task 5 is the most physically demanding in that it requires the participant to move their arm (the other
tasks involve only hand or finger movement). It is not uncommon for facial expressions to occur during exertion.
Overall, expressivity levels are generally lower among individuals with PD, however, some AUs, such as AU4 and
AU25, are more heavily expressed during resting activity [61].

Why does the group with PD show higher average levels of AU4 expression? The muscles associated with AU4
include the corrugator supercilii, which pulls the brow downwards and towards the center of the face, as well
as the depressor supercilii, which pulls the brow directly downwards [24]. The expression of AU4 has been
demonstrated to be strongly correlated with negative valence and inversely related to positive valence [37].
In this context, valence refers to composite self-reported positive and negative affective reactions. As PD is
associated with distress, it is not surprising that we would find higher levels of AU4 expression in the group with
PD during the resting task. Though significant differences in AUs 4 and 26 were not observed in [14], their study
was concerned with posed facial expressions. While [14] asked participants to mimic the six basic emotions,
and measured the expression of AU4 during anger and sadness, this work is concerned with the resting facial
expressions of participants. It is important to note that our data showed that the difference in AU4 expression
between the group with PD and the control group is strongest in Task 1 where participants remained at rest.
However, in all the tasks, average AU4 expression level was higher in the group with PD. The reason the difference
is significant only in Task 1 may be due to the increased variance in facial expression levels in other tasks. In all
tasks other than Task 1, individuals are either moving or speaking. Perhaps the resting task is least affected by
"noise" from physical exertion and movement. It is reasonable that different individuals tend to react differently
during active tasks (i.e. there is only one way to truly stand still, but many ways to move). The sample variances
directly affect the p-value calculation, driving the p-value higher when the variance within the groups is larger.
Why does the group with PD show a lower average motion metric level? We observed that participants with

PD had a low average frequency in their motion features compared to their age-matched control. The lower
motion metric level is consistent with the general decrease in muscle control associated with PD. This might be
related to the freezing of gait [58], prolonged reaction time [12, 26], or other movement disorders [19] among
the participants with PD. Our motion metric is calculated from the optical flow of the movements in the video
frames. This might be a reason why we observe the lower motion metric among the PD participants. One of the
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original intentions in the design of the motion metric was that the motion metric produces discernible differences
between the two groups. From a statistical significance perspective, our results show that this objective was
achieved on a group level. However, the variability of the motion metric is too high to enable the use of the
motion metric independently as a diagnostic measure for individual evaluation of PD.
How robust is the motion metric in different conditions? We tested our motion metric in six different corner

conditions. Those conditions were performed by the same person to verify if the motion metric is affected by the
video conditions. In the baseline test, the variance of Tests 2-5 is 4.5e-5, but for Tests 1-5, when Test 1 is included,
it is 8.8e-4. Test 1 has a value of 0.109 which is roughly three times larger than the other tests. It appears that in
20% of the cases untargeted motion is picked up by the algorithm. We acknowledge this as a limitation of the
motion metric. In regards to the other scenarios, noisy background has the largest effect on the motion metric
with a variance of 2.5e-2 in this condition. While the variance of the motion metric is small enough to observe
statistically significant differences between the group with PD and the control group, the variance is too large to
apply the motion metric as a diagnostic tool for individuals. In summary, while the motion metric is resilient
enough to show group-level differences, it is not robust enough to enable individual-level diagnosis of PD.
Overall, the low variance (8.4e-3) in the motion metric on different conditions indicates that the metric is

dependent on the persons’ movement characteristics and not the video conditions, excluding background motion.
Two major steps of the motion metric calculations might explain this resilience. First, the motion metric is
calculated based on a region of interest (i.e., where most movement is visible). Second, the motion metric is
calculated in the frequency domain, which captures the prominent movement in the video frame. Though there
can be movements in the head or other body parts, after performing the Fourier transform we were able to isolate
these movements easily.

We found that the correlations between the MDS-UPDRS ratings and the motion metric were low (<0.4). It is
possible that the motion metric is not holistically representative of PD motor symptoms. Since the frequency
measurement captures only one aspect of the MDS-UPDRS rating, which is also based on amplitude, hesitations
and halts, this might explain why the correlations were not as strong.

How was the PARK system received by participants? Based on this early study, participants were hopeful about
the feedback the web application could provide in the future. They appreciated the personal agency it afforded
them, yet they also valued the in-person relationships developed at the clinic. In regards to the user interface,
they wanted more control to move through the pages. Some participants who were familiar with the motor
exercises wanted to skip the videos and the instructions. However, we made it mandatory to watch the videos
keeping in mind that people with PD show cognitive impairment [40]. Because there might be users with reduced
visual and cognitive abilities, video instructions were preferable to stand-alone written instructions. This method
was intended to make it easier for users to follow along and feel that using PARK is similar to a doctor’s visit
where someone is demonstrating the exercises. In the future, participants may not be using a personal computer
or they may be sharing a monitor with other participants in a group screening. To limit confusion, it is important
that an individual is there to assist them and to administer the study because they might be unfamiliar with
the operating system. To further follow the guidelines outlined for older adults, we found that there could be
improvements in time performance, for users on very slow Internet connections, and translations for non-English
speaking users [10].

6.1 Limitations
At this time, participants do not receive feedback on their symptoms, and this system has not been validated
as an assessment tool for measuring symptoms of PD. Because the frequency measurement captures only one
aspect of the MDS-UPDRS rating, it is important to note that the PARK system tasks do not address all PD motor
symptoms. If a person with PD experiences halting in the motor tasks, this would not be recognized. PARK
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would be useful for those affected specifically by upper-limb tremor, rigidity or bradykinesia. While statistically
significant differences have been identified in the median feature values between the group with PD and the
control group, due to the high variance in each of the relevant features, accurate individual predictions cannot be
made.
A limitation with the video and audio recording capability of the RecordRTC JavaScript library is that it is

only available for Firefox, Chrome, and Opera. If a user accessed PARK through another incompatible browser,
they would be directed to a page with instructions on downloading Chrome. However the situation can be
inconvenient and confusing for users. For example, one individual did not know how to access Chrome, and
incorrectly tried to change their settings in Safari to have Google as their search engine as a solution. This is an
issue that should be addressed in future work. We also acknowledge that if a participant has a slow network
connection, they will experience a longer wait time for their videos to upload which can diminish usability for
older participants.
It should be noted that we collected vowel phonations in this study, but we did not analyze this data for the

paper. Additionally, a limitation of the task selection is that the development of Tasks 1 and 2 make the videos
more difficult for trained individuals to rate.

6.2 Future Work
The data obtained by the PARK system identifies significant differences between the group with PD and the
control group. These findings, consistent with past research, demonstrate that PARK is a viable system for
remotely gathering data useful for detecting PD. It should be noted that while our participants did not take part
in frequent re-evaluations with PARK over the course of treatment or a long duration, we have demonstrated that
participants are capable of remotely accessing the PARK system and completing the online tasks without our
help. It follows that an online framework could easily be used for frequent monitoring without the constraints of
scheduling clinicians or requiring screened individuals to travel into a health care facility. Our tool is not validated
either as a diagnosis nor assessment tool, and the features examined have been evaluated from a statistical rather
than classification analysis. It should be clearly stated that the correlation of MDS-UPDRS scores with our motion
metric is exploratory and was only done on a subset of the data, and is thus not yet ready for clinical trials.
In future work, we plan to more closely track disease progression through home monitoring. This could be

possible by enabling participants to set up accounts to track their progress and receive an assessment score.
Currently, the features have not been evaluated in relation to specific drug treatment, or on-off states, as this
information has not been collected. But, eventually, we hope to monitor the severity of symptoms through feature
extraction for this purpose. If symptoms can become quantifiable using the discussed features, this technology
could be used to help clinicians find the optimal dose and schedule for symptom modifying treatments. With the
ever rising costs of drug development, an objective PD assessment system may help improve the evaluation of
new PD drugs by making high frequency online assessments of PD easy and cost effective to implement.

7 CONCLUSION
A web application that indicates the presence of Parkinson’s disease (PD) and provides an analysis of symptoms
could be of great benefit to individuals with PD. It is hard to determine the presence of PD in its beginning stages,
which is why early detection is important. The PARK web application could be helpful to individuals, who for a
number of reasons are unable to or do not visit the hospital or clinic, in order to alert them of PD symptoms. Based
on our results, the use of videos, or potentially images, to determine the presence of a significant furrowed brow
(AU4), the absence of smiling (AU12), and the frequencies of hand motion could be new methods for indicating
symptoms of PD. For a definite diagnosis, it is recommended that a person visits a neurologist or another trained
individual to receive a holistic diagnosis that takes into consideration their medical history. An online framework
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that assesses features of PD could be introduced during a clinic visit to initially supplement the tool with personal
support. Additionally, for undiagnosed individuals who are curious about the presence of PD symptoms, it could
serve as an important starting point.
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