
 
 

 

  

Abstract— This paper explores the relative importance of 
discourse features, prosodic features and their fusion in robust 
classification of speech acts.  Five different feature selection 
algorithms were used to select set of features to improve the 
robustness of the classification. The natural synergy between 
subset of prosodic and discourse features was then used to 
model the speech acts using different categories of classifiers. 

 
I. INTRODUCTION 

Understanding and producing multimodal communication 
in humans and agents requires an understanding not only of 
the semantic meaning of an utterance, but also of the 
intended meaning behind that utterance. Take for instance 
an utterance like “go between those”. This utterance could 
be interpreted as an instruction (“you should go between 
those!”), as a yes/no question (“should I go between 
those?”), as an acknowledgment (speaker just stated “go 
between those” and the respondent confirms acknowledging 
the utterance by repeating “got it, go between those”). In all 
three cases the semantic meaning of the utterance is the 
same (there is an event of going and an implied patient is 
undergoing this event). What differs is the pragmatic 
meaning behind each of these utterances. This pragmatic 
meaning can be captured in speech acts, like questions, 
commands, promises, warnings. Knowing what speech act 
an utterance can be classified in can help reveal its 
pragmatic meaning [1][2][3][4]. 

Speech acts are known to shape the structure of the 
dialogue and can often be helpful in predicting the 
intonational patterns for a dialogue. Studies [5][6] have 
shown that the sequence of speech acts and the association 
between such acts and observed intonational contours can 
significantly help the performance of speech recognition 
engines. Speech acts have even proven to be useful in 
predicting eye-brow movements [7] and modalities like eye 
gaze, facial expressions and route drawings [8].  

Successfully classifying utterances into speech acts is a 
research challenge for computational linguists, engineers, 
computer scientists and psychologists alike. Most speech act 
classification systems rely on discourse features to assign 
utterances to a speech act [1][9][10][11]. The problem with 

 
M. E. Hoque is with the Department of Electrical and Computer 

Engineering / Institute for Intelligent Systems, Memphis, TN 38152 USA 
(e-mail: mhoque@memphis.edu). 

M. S. Sorower is with the Department of Electrical and Computer 
Engineering / Institute for Intelligent Systems, Memphis, TN 38152 USA 
(e-mail: msorower@memphis.edu). 

M. Yeasin is with the Department of Electrical and Computer 
Engineering / Institute for Intelligent Systems, Memphis, TN 38152 USA 
(e-mail: myeasin@memphis.edu). 

M. M. Louwerse is with the Department of Psychology / Institute for 
Intelligent Systems, Memphis, TN 38152 USA (e-mail: 
mlouwerse@memphis.edu). 

systems like these is that they solely focus on discourse 
features, making it unclear whether, and to what extent, 
other modalities, like speech features, also contribute to 
speech act classification. Moreover, only relying on 
discourse features makes online classification problematic. 
Whereas offline classification may work well because of the 
availability of discourse features that were carefully 
transcribed from speech, online classification does not have 
access to these features due to the far from optimal 
performances of speech recognition systems.  

It seems easy and logical to consider prosodic features in 
speech act classification. In the example used earlier (“go 
between those”) by analyzing the intonation pattern (e.g. 
rising or falling pitch), the utterance can be classified as a 
question or an instruction. Natural conversations, however, 
turn out to have little variation in pitch contour and 
intonation pattern for many speech acts.  
     Let us illustrate this with an example from a large corpus 
of natural multimodal communication, to be discussed 
below. Figure 1(a) shows the pitch contour of a small 
segment of a conversation between two dialogue partners, 
where one initially asks a question (“in between those?”) 
and the other reaffirms by responding (“uh-huh, in between 
those.”). Figure 1(b) and 1(c) shows the pitch contour of the 
same statement (in between those), used in two different 
ways, a question and statement. From Figure 1, it is evident 
that there are a few noticeable differences between the pitch 
contours, despite the fact that the two utterances mark 
different speech acts (instruction and yes/no question). 

 The little variation in pitch contours perhaps explains the 
relatively low accuracy in speech act classification obtained 
through prosody only, ranging from 40-43% [12][13].  

The performance of speech act classification systems can 
perhaps be improved by fusing prosody and discourse 
information together. The classifier should not only be 
capable of disambiguating discourse information, but should 
also compensate for the low word recognition rate of the 
speech engines by using prosody, thus minimizing syntactic 
and semantic search complexities [14][15]. Also, it is 
important to study the relative importance of the features 
from discourse and speech data by identifying features that 
are more important into the classification decision. This 
feature selection framework not only provides useful cues 
regarding which features are more relevant for a particular 
dialogue act, but also helps to reduce the dimensionality of  
the feature set by eliminating collinear features. In the past, 
speech act classifications have been performed with one or 
two classifiers, like support vector machines and hidden 
markov model [12][13]. However, we argue that 
effectiveness of a feature set is dependent on the 
characteristics of classifiers. While a certain feature set may 
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work well with one classifier, it may fail for others. 
Therefore, it is important to create models of features using 
a variety of feature selection algorithms and test those 
models across a diverse set of classifiers. Through this 
approach, it may be possible to identify discourse and 
speech feature sets that are robust across all the diverse set 
of classifiers.      

This paper addresses the questions of relative importance 
of discourse features, speech features and their fusion in 
speech act classification. To address such questions and use 
the synergy, a subset of speech and discourse features have 
been identified using 5 different feature selection algorithms 
and then tested with 7 sets of classifiers allowing for a 
comparison of features, classifiers and modalities. 

 

 
(a) A segment of a map-task  conversation  
Speaker A: in between those? 
Speaker B: uh-huh..in between those 

  
(b) Speaker A: in between those? (c) Speaker B: in between those. 

 
Figure 1: Pictorial description (pitch) of a case where prosody fails to 
distinguish between a question and statement 
(a) The overall conversation in context, (b) Question made by Speaker A; 
(c) Response made by Speaker B. 

II.  MEMPHIS MULTIMODAL MAP TASK CORPUS 

     Our interest in speech acts stems from a large 
multimodal communication project [16][17]. This research 
project explores how different modalities in face-to-face 
dialogues align with each other and tries to implement those 
rules extracted from human experiments in an artificial 
conversational agent (ECA). The ECA is expected to 
interact with humans more naturally as a validation of the 
study. In order to engage human participants into a natural 
task oriented conversation, the Map Task scenario [18] has 
been chosen as the general setup for study.  

   The Map Task is a map-oriented experimental setting in 
which two participants work together to achieve a common 
goal through conversation. One of the participants is 
arbitrarily denoted as Instruction Giver (IG) who 

collaborates with the other partner, known as Instruction 
Follower (IF), to reproduce on IF’s map a route printed on 
IG’s (Figure 2). However, the maps of the IG and IF are not 
identical. Different landmarks or features of landmarks are 
used. Moreover the color of some landmarks on IF’s map, 
are obscured by an ink blot.  The differences are 
intentionally designed to elicit dialogue in a controlled 
environment based on common ground and differences in 
their maps. These inconsistencies between the maps are 
expected to be resolved through multimodal communication 
between the IG and IF. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Example of maps. IG map presented on left, IF’s map (with route 
drawn by IF) on right. 

 
The current corpus consists of 256 conversations from 64 

participants. All the participants were instructed to perform 
the role of IG (4 conversations) and the role of IF (4 
conversations). Different maps that varied in terms of 
homogeneity of objects were used in each conversation. 
Figure 2 demonstrates an example of the maps for the IG 
and IF. The participants included 62% of female, and 39% 
of African American and 57% of Caucasian. For this 
experiment, 16 conversations were randomly sampled 
totaling 72 minutes of dialogue with different participants 
and different maps for each conversation. Below we focus 
on those aspects of the corpus relevant for this study. 
    Thirty-two participants performed the multimodal Map 
task, 21 of them females and 11 males. All of the 
participants were native speakers of English. A Marantz 
PMD670 speech recorder was used to record speech of IG 
and IF on two separate (left and right) channels using two 
AKG C420 headset microphones. Participants, seated in 
front of each other, were separated by a divider to prevent 
any direct communication between them. They could only 
communicate through microphones and headphones, while 
they could view both the upper torso of the dialogue partner 
and the map on a computer monitor in front of them. A 
colored map was presented to IG with a route drawn on it 
(similar to the one presented in Figure 2). The IG was 
supposed to communicate the route information to the IF as 
accurately as possible. The 12 dialogue acts that are 
typically used for Map Task coding were used [1][2]. Table 
1 presents an overview of these dialogue acts with necessary 
descriptions and examples. The utterances of half of the 
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conversations were manually coded as one of the twelve 
dialogue acts. Inter-rater reliability between the coders in 
terms of Cohen's Kappa was satisfactory at .67. Coders 
resolved the conflicts, primarily relating to the 
acknowledgment dialogue act, and coded the remaining 
transcripts for dialogue acts. 

III.  PROPOSED APPROACH 

The proposed approach consists of five main components 
as shown in Figure 3, namely, I) segment the conversation 
automatically into turns, II) extract (manually) dialogue acts 
from turns (if applicable) and then label them using human 
experts, III) mine the feature-space to select novel prosodic 
and discourse features from the audio-visual corpus, IV) 
fusion of prosodic and discourse features, and V) use 
various machine learning techniques for classification of 
dialogue acts. Subsequent subsections briefly discuss each 
module of the proposed speech act classification system.  

 
 
 
 
 
 
 
 

 

 

 

 

 

 
 
Figure 3: High Level diagram of the dialogue act classification system. 

  A. Turn segmentation 

    To detect the turn, the speech signal from the IG and IF 
have been considered simultaneously. The pauses in spoken 
words were used as the feature to detect the beginning and 
end of a turn in a natural conversation. Pauses were detected 
on each audio channel using the upper intensity limit and 
minimum duration of silences. In measurement of intensity, 
minimum pitch specifies the minimum periodicity frequency 
in any signal. In this case, 75 Hz for minimum pitch yielded 
a sharp contour for the intensity. Audio segments with 
intensity values less than its mean intensity were classified 
as pauses. Thereby, mean intensity for each channel rather 
than a pre-set threshold was used, enabling our pause 
detection system to properly adapt to the diverse set of voice 
properties of the participants. Any audio segments with 
silences more than 0.4 seconds were denoted as pauses. The 
speech processing software Praat [19] was used to perform 
all calculations to identify these pause regions. 

Figure 4 gives an example of how a conversation gets seg-
mented into turns. Note that turn 3 contains more than one 
speech act and thus, needs to be segmented further. 
Therefore, some manual inspection was needed to segment 
the conversation into speech acts from turn levels.  
 

 
 
Figure 4: Example of how turns are segmented from conversations. 

 B. Features Extraction 

Prosodic features related to pitch, intensity, formant, 
duration, pauses, rhythm were extracted (details are 
provided in Table 2). Discourse features that were extracted 
included parts of speech tagging and sequence, dialogue 
history, probability of one utterance belonging to 13 
different categories using Probabilistic Latent Semantic 
Analysis (PLSA) [20], as shown in Table 2.  

  C. Features Selection and Classification 

 To boost the performance of speech act classification, 
extracted discourse or speech features are often projected 
onto the low dimensional subspace [13][21] (for instance 
using principle components analysis and linear discriminant 
analysis). While the subspace projection adds values in 
improving the performance of model, but often fails to 
answer important questions such as which set of features 
carry most information. To solve this problem, a few feature 
mining algorithms are used for the selection of features. The 
selected set of features is used as input to various machine 
learning techniques (for example, Bayes, Functions, Meta, 
Trees, and Rule based classifiers) to model different speech 
acts. 

IV.  RESULTS AND DISCUSSIONS 

Five different feature sets were created for prosody and 
discourse using five different feature selection algorithms, 
such as, Subset Evaluator (Best First), Chi Squared Attribute 
Evaluator (Ranker), Consistency Subset Evaluator (Greedy  

IG:  Go right………...okay…..........then..go straight 

        
           turn1 |  pause  | turn3| pause| cont. of turn3  
 
IF:  …………..okay……………………………….. 

        
          pause    |turn2|                   pause        
 
Segmented turns: 
turn 1- IG - Go right 
turn 2- IF  - Okay 
turn 3- IG - Okay……then...go straight 
 
Segmented speech acts: 
turn 1- IG - Go right (Instruction) 
turn 2- IF  - Okay (Acknowledgment) 
turn 3- IG - Okay (Acknowledgment) 
turn 3- IG -  Then...go straight (Instruction)   
 



 
 

 

step wise), and Gain Ratio Attribute Evaluator (Ranker)[23]. 
Seven different categories of classifiers - Bayes, Function, 
Meta, Tree and Rule were used to model 12 speech acts 
using the feature sets. This helped to identify the robust set 
of prosodic and discourse features that can be used to model 
the speech acts using diverse classifiers. For example, 
combination of four prosodic features, such as, role (IG or 
IF), duration of the speech act, average value of the second 
formant, and speaking rate were found to be the most 
important features using SubSet evaluator and its 
performance was comparable to the model which employed 
50 prosodic features. Chi Squared Attribute evaluator 
yielded features such as speaking rate, duration of the 
speech act, εtime, role, number of voice breaks in a dialogue 
act as the optimal feature with reasonable accuracy rate. 
Feature sets generated using Consistency Subset Evaluator 
were able to classify 13 different speech acts 48% of the 
time in average, using features such as role, energy, F0 
related statistics, statistics related to second and third 
formant, number of voice breaks, pauses, and number of 
rising and falling edges in a dialogue act.  

 A similar procedure was employed to identify the optimal 
discourse feature sets and test their accuracy. For 
SubsetEvaluator feature selection algorithm, features such 
as, role (IG or IF), number of words in each speech act, 
previous speech act, the first three sequences of the parts of 
speech of the speech act, yielded comparable accuracy in 
compare to another model with more than 100 discourse 
features.   Consistency Subset Evaluator, however, yielded 

the highest accuracy of distinguishing any of the 13 speech 
acts 65% of the time, using features such role, number of 
parts of speech (cardinal number, determiner, noun, verb, 
and adjective), number of words in each speech act, the first 
5 sequence of the parts of the speech, previous two speech 
acts.  

Finally, the prosodic features were fused with the 
discourse features to boost overall classification accuracy. A 
simple feature level fusion of the discourse and prosodic 
features yielded an average of 65.60% accuracy, with the 
highest of 70.56% obtained using the meta based classifier. 
Based on the observation, it can be inferred that adding 
prosody with discourse in MapTask corpus does boost the 
overall accuracy as demonstrated in Figure 4. For example, 
for Function based classifiers, the performance increase was 
up to 8.33%.  

Table 3 and 4 also show that the classification 
performance of LogitBoost, a log based classifier, is 
noticeably consistent on average yielding the highest 
performance across the three categories (speech, discourse 
speech and discourse). The fusion and normalization of data 
from the two linguistic modalities speech and text, is a 
difficult problem. LogitBoost shrinks the dynamic range of 
the prosodic and discourse features. The monotonic 
logarithmic mapping thus makes LogitBoost more consistent 
and robust than the other classifiers used in this paper.    To 
improve the performances of other classifiers, a better 
normalization approach is required and will be explored in 
future work.     

It is noteworthy that the two linguistic modalities, prosody 
and discourse features, correlate in the mistakes they make 
in the speech act classification process (r = .88, p < .001, N 
= 156). Whereas we had expected that prosody would 
capture differences between speech acts like instruction and 
query-yn, and discourse would capture differences like 
reply-y and reply-n, this is not what the current results show. 
Explanations need to be further investigated, but sample size 
for some of the dialogue acts, ambiguity in the coding 
system, and limited lexical and prosodic variation in natural 
speech are some of the tentative explanations. 

It is also surprising that the probability values for a given 
utterance belonging to a certain class obtained from PLSA 
turned out to be very insignificant. One potential 
explanation is that PLSA is suited for larger paragraphs, 
whereas most of the current corpus consists of smaller 
utterances (5-6 words per utterance on an average). The low 
performance of the PLSA may also be explained by the 
Maximum Likelihood (ML) that is used to estimate the 
model parameters (distribution of words per speech acts and 
the distribution of speech acts in the corpus). Given the 
sparse nature of the term-dialogue matrix it is hard to 
estimate the model parameters using the classic ML. 

Future effort on speech act classification will include 
fusion of classifiers by utilizing their diversity in the 
decision process. In this experiment, it was evident that 

TABLE 1. SPEECH ACT CATEGORIES (DESCRIPTION AND EXAMPLES) 

DialogAct Description 
INSTRUCT Commands partner to carry out action 

 Go between the two green houses. 
EXPLAIN States information not directly elicited by partner  

I have a set of four hours 
CHECK Requests partner to confirm information  

So, between the green and blue one? 
ALIGN Checks attention, agreement, readiness of partner 

Ok, do you see those two blue cars? 
QUERY-YN Yes/no question that is not CHECK or ALIGN 

Do you see the house? 
QUERY-W Any query not covered by the other categories 

What do I do after I cross the house? 
ACKNOWL  Verbal response minimally showing 

understanding 
Uh huh. 

REPLY-Y Reply to any yes/no query with yes-response 
Yeah, I see the house. 

REPLY-N Reply to any yes/no query with no-response 
No, no house there. 

REPLY-W Reply to any type of query other than ‘yes or ‘no’ 
I see a car. 

CLARIFY Reply to question over and above what was asked  
Cross the car and there is a house 

READY Preparing conversation for new dialog game 
Alright, you are going to start at the top. 

UNCODBL e.g. laughing 



 
 

 

certain classifiers work best under certain conditions with 
different kinds of feature sets. For example, from Table 4, it 
can be inferred that function based classifier SMO provides 
the highest average performance enhancement by fusion of 
prosody and discourse. But Table 4 also shows that meta-

based classifiers, Bagging and LogitBoost, provide the 
highest average accuracy for prosody and discourse, 
respectively. Therefore, future efforts will include fusion of 
those classifiers considering the diversity of their decision 
process.

 
TABLE 2: THE PROSODY AND DISCOURSE FEATURES EXTRACTED FROM DIALOGUE ACTS AND THEN OPTIMAL FEATURES WERE IDENTIFIED  

 Features Optimal features 
 

Pitch 
Minimum (pMin), Maximum (pMax), Mean (pMean), Standard Deviation 
(pSD), Absolute Value (pAV), Quantile (pQ), Unvoiced/Voiced frames of 
pitch (pUV). 

pMin, pMax, pMean, 
pAB, pQ, pUV 

Intensity Minimum (iMin), Maximum (iMax), Mean (iMean), Standard Deviation 
(iSD), Quantile (iQ) 

iMin, iMax, iQ 

Formant Average value of first formant (fVal1), second formant (fVal2), third formant 
(fVal3). Average bandwidth of first formant (fBand1) , second bandwidth 
(fBand2), third bandwidth (fBand3), Mean of first formant (fMean1),  second 
formant (fMean2), third formant (fMean3), fMean2/fMean1, fMeanf3/fMean1, 
Standard deviation of first formant (f1STD), second formant (f2STD), third 
formant (f3STD), f2STD/f1STD, f3STD/f1STD 

fVal2, fVal3, fBand1, 
fmean3, 

fMean3/fMean1, 
f1STD, f3STD 

Duration duration of the dialogue act (d1), εtime, εheight  [21] 
  

D1, εtime 

Pauses percent of Unvoiced Frames (pUF), # of Voice Breaks (#OVB), percent of 
Voice Breaks (pVOB), # of Pauses (nP),  maximum duration of Pauses (mdp), 
average duration of pauses (adp) , total duration of Pauses (tdp) 

#OVB, pVOB, nP, adp, 
mdp, tdp 

Rhythm speaking Rate (SR). SR 
Edges Magnitude of the highest rising edge (mhre), magnitude of the highest falling 

edge (mhfe), average magnitude of all the rising edges (amare) average 
magnitude of all the falling edges (amafe),  # of rising edges (#re), # of falling 
edges (#fe). 

#re, #fe 

 
 
 
 
 
 
 
 
 
 

Prosody 

Misc. jitter (jt), shimmer (sh), energy (e), power (p), role Role, energy 
Parts of speech sequence in each utterance [P1-P30] P1, P2, P3, P4, P4, P5, 

P6, P7 
Number of words in an utterance [WC] WC 

Probabilistic Latent Semantic Analysis (PLSA) [20] values for each utterance belonging to a 
cluster (Model fitting with the EM algorithm) [cluster1-cluster12] 

 

Previous speech acts (prev1, prev2) Prev1, Prev2 

 
 
 
 

Discourse 
 

Parts of speech tagging [22] CD, DT, EX, IN, JJ, 
VB, VBN, WP, VBP 

TABLE 3: ACCURACY OF CLASSIFYING 13 DIALOGUE ACTS WITH PROSODY ONLY, DISCOURSE ONLY, AND BOTH (PROSODY + DISCOURSE), M0= ALL THE 

FEATURES, M1= SUBSET EVALUATOR (BESTFIRST), M2= CHI SQUARED ATTRIBUTE EVALUATOR (RANKER), M3= CONSISTENCY SUBSET EVALUATOR 

(GREEDY STEP WISE), M4= GAIN RATIO ATTRIBUTE EVALUATOR (RANKER). 
Accuracy to classify 13 dialogue acts (%) 

Bayes 
based 

classifier 
 

Function 
based 

classifier 

Meta based 
classifier 

Meta 
based 

classifier 

Tree 
based 

classifier 

Tree 
based 

classifier 

Rules 
based 

classifier 

 
 
 

Feature 
Selection 
Algorithm 

 
 

Bayes Net SMO LogitBoost Bagging Random 
Forest 

J48 Decision 
table 

 
 

Avg. 
Accuracy 

(%) 

M0 42.67 49.22 50.06 51.72 50.36 40.43 49.26 47.67 

M1 50.28 47.95 48.01 49.38 42.75 43.08 50.50 47.42 
M2 46.67 48.07 47.65 48.64 37.56 47.14 50.36 46.58 
M3 46.68 48.60 48.73 51.84 49.42 41.36 49.05 47.95 P

ro
so

d
y 

M4 46.32 47.99 47.89 48.85 42.34 42.06 50 46.49 
M0 61.66 68.16 67.02 64.62 65.5 66.03 64.36 65.33 
M1 66.48 60.88 64.98 61.97 60.52 63.17 61.25 62.75 
M2 64.25 59.56 67.74 62.7 65.13 66.03 62.45 63.98 
M3 64.73 64.60 66.54 63.37 64.6 66.45 64.15 64.92 D

is
co

u
rs

e 

M4 61.35 54.7 62.57 64.11 62.76 63.41 62.97 61.69 
M0 58 69.21 70.56 65 64.04 66.35 66.10 65.60 

B
o

th
 

M3 63.46 64.93 68.2 63.09 63.95 65.46 64.15 64.74 

 



 
 

 

TABLE 4: COMPARISON OF CLASSIFIERS IN SPEECH ACT CLASSIFICATION 
Classifier Accuracy 

Prosody 
(%) 

Accuracy 
Discourse 

(%) 

Accuracy 
Prosody & 
Discourse 

(%)  

Boost by 
fusion  
(%) 

BayesNet 46.524 63.70 60.73 -4.67 
SMO 48.37 61.58 66.71 8.33 

LogitBoost 48.47 65.78 69.38 5.47 
Bagging 50.09 63.354 63.05 -.47 
Random 
Forest 

44.49 63.70 63.96 .41 

J48 42.81 65.09 65.25 .24 
Decision 

Table 
49.83 63.036 65.13 3.32 

V. CONCLUSION 

This paper has addressed the questions of relative 
importance of discourse features, speech features and their 
fusion in speech act classification. Five different feature 
selection algorithms and tests with seven sets of classifiers 
on a natural multimodal communication corpus showed that 
certain classifiers work best under certain conditions with 
different kinds of feature sets. That is, a one-size-fits-all 
approach for algorithms and classifiers does not yield 
optimal performance. Instead, a synthesis of algorithms and 
classifiers is needed. Similarly, the results presented here 
show that discourse and prosodic features are intrinsically 
related, whereby for speech act classification speech says as 
much about discourse, as discourse about speech. 
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