Sam & Nate

Motivating questions/ discussion:

• What makes neural networks such a powerful class powerful learning algorithms? When do they approach or surpass human level?

- What makes neural networks such a powerful class powerful learning algorithms? When do they approach or surpass human level?
- What makes humans better than neural network approaches at some tasks? Which ones?

- What makes neural networks such a powerful class powerful learning algorithms? When do they approach or surpass human level?
- What makes humans better than neural network approaches at some tasks? Which ones? E.g. inferring rich semantics from visual scene, learning from very sparse data, etc...
 - Generalization/ transfer?
 - Structured or compositional thinking abilities?
 - Something else?

- What makes neural networks such a powerful class powerful learning algorithms? When do they approach or surpass human level?
- What makes humans better than neural network approaches at some tasks? Which ones? E.g. inferring rich semantics from visual scene, learning from very sparse data, etc...
 - Generalization/ transfer?
 - Structured or compositional thinking abilities?
 - Something else?
- For people interested in modeling human cognition: what makes neural networks useful as models of human thought, what makes them less helpful?

- What makes neural networks such a powerful class powerful learning algorithms? When do they approach or surpass human level?
- What makes humans better than neural network approaches at some tasks? Which ones? E.g. inferring rich semantics from visual scene, learning from very sparse data, etc...
 - Generalization/ transfer?
 - Structured or compositional thinking abilities?
 - Something else?
- For people interested in modeling human cognition: what makes neural networks useful as models of human thought, what makes them less helpful?
 - One idea: greater built-in modularity to neural networks might make them more tractable as "process models".

 A classic approach in Al and cognitive science, sometimes called "Good Old Fashioned Artificial Intelligence" (GOFAI), is based on finding rules that describe the structure of the world.

- A classic approach in AI and cognitive science, sometimes called "Good Old Fashioned Artificial Intelligence" (GOFAI), is based on finding rules that describe the structure of the world.
- These approaches have segued into (usually) Bayesian accounts of inference over symbols.

- A classic approach in AI and cognitive science, sometimes called "Good Old Fashioned Artificial Intelligence" (GOFAI), is based on finding rules that describe the structure of the world.
- These approaches have segued into (usually) Bayesian accounts of inference over symbols.
- A strong argument in favor is the ease of compositionality - useful for problems in language, reasoning, etc...

- A classic approach in Al and cognitive science, sometimes called "Good Old Fashioned Artificial Intelligence" (GOFAI), is based on finding rules that describe the structure of the world.
- These approaches have segued into (usually) Bayesian accounts of inference over symbols.
- A strong argument in favor is the ease of compositionality - useful for problems in language, reasoning, etc...

Emergentist Approach (Deep Learning)

• Structured approaches are usually not as capable at pattern recognition as neural network approaches.

Emergentist Approach (Deep Learning)

- Structured approaches are usually not as capable at pattern recognition as neural network approaches.
- Generally, have capacity to represent "deep" structure to problems, not easily captured by symbols.

Emergentist Approach (Deep Learning)

- Structured approaches are usually not as capable at pattern recognition as neural network approaches.
- Generally, have capacity to represent "deep" structure to problems, not easily captured by symbols.

Visual Question Answering

- The common techniques fall into these two camps.
 - Structured symbolic: use semantic parsers to decompose questions into logical expression.
 - Deep learning: use bag of words (or more complicated) to represent question, train a classifier over the image and question simultaneously.

• An attempt to get the best of both structured and emergentist approaches.

- An attempt to get the best of both structured and emergentist approaches.
- Two observations:
 - There is no one best neural network architecture or learning algorithm for all tasks (that we know of).
 - It is often helpful to use pre-trained network and then "fine-tune".

- An attempt to get the best of both structured and emergentist approaches.
- Two observations:
 - There is no one best neural network architecture or learning algorithm for all tasks (that we know of).
 - It is often helpful to use pre-trained network and then "fine-tune".
 - **Conclusion**: neural networks are empirically modular. Intermediate representations are useful for different purposes.

- An attempt to get the best of both structured and emergentist approaches.
- Two observations:
 - There is no one best neural network architecture or learning algorithm for all tasks (that we know of).
 - It is often helpful to use pre-trained network and then "fine-tune".
 - **Conclusion**: neural networks are empirically modular. Intermediate representations are useful for different purposes.
- Different kinds of processing might be involved.
 - Example: convolutions might be useful for object identification, but recurrence might be useful for counting.

- Neural network architecture built on "modules", which are:
 - Independent
 - Composable
 - Well-typed

- Neural network architecture built on "modules", which are:
 - Independent
 - Composable
 - Well-typed
- It makes sense to not have a fixed architecture to solve every problem. Best structure, components, might vary between problems.
- Consider: "is there a television?" versus "how many objects are resting on top of the television?"

General Approach

Steps

- First analyze each question with a semantic parser.
- The output of the semantic parser is then used to determine which "modules" to use.
- Modules are assembled and then jointly-trained.

• Three input/output types: images, attentions, and labels.

Find

 $Image \rightarrow Attention$

Transform

 $Attention \rightarrow Attention$

From strings to networks

• Need to assemble the layout based on the input question

From strings to networks

- Need to assemble the layout based on the input question
- Uses the Stanford Parser with basic lemmatization
 - "What is standing in the field?" → what (stand)
 - "What color is the truck?" \rightarrow color (truck)
 - "Is there a circle next to a square?" → is (circle, next-to(square))

From strings to networks

- Need to assemble the layout based on the input question
- Uses the Stanford Parser with basic lemmatization
 - "What is standing in the field?" → what (stand)
 - "What color is the truck?" \rightarrow color (truck)
 - "Is there a circle next to a square?" → is (circle, next-to(square))
- Create tree based on parsing
 - "What color is the tie?" → describe[color] (find[tie)

Answering Natural Language Questions

- Utilizes a simple LSTM question encoder
 - Simplifying the question discards important information. E.g., what **is** versus what **are**.
 - Allows for reasonable guesses based purely on the question

Answering Natural Language Questions

- Utilizes a simple LSTM question encoder
 - Simplifying the question discards important information. E.g., what **is** versus what **are**.
 - Allows for reasonable guesses based purely on the question
- Output of the encoded is then added to the NMN
 - Elementwise ReLU

Answering Natural Language Questions

- Utilizes a simple LSTM question encoder
 - Simplifying the question discards important information. E.g., what **is** versus what **are**.
 - Allows for reasonable guesses based purely on the question
- Output of the encoded is then added to the NMN
 - Elementwise ReLU
- Final output is a softmax over the set of answers seen during training

Testing Compositionality

- Created a dataset called SHAPES to test on synthetic data
 - 64 images
 - 244 unique questions
 - All answers are yes-or-no*

Testing Compositionality

- Created a dataset called SHAPES to test on synthetic data
 - 64 images
 - 244 unique questions
 - \circ $\,$ All answers are yes-or-no* $\,$
- Necessary but not sufficient for robust visual QA

Testing Compositionality

how many different lights in various different shapes	what is the color of the horse?	what color is the vase?	is the bus full of passen- gers?	is there a red shape above a circle?
describe[count](find[light])	<pre>describe[color](find[horse])</pre>	describe[color](find[vase])	<pre>describe[is](combine[and](find[bus], find[full])</pre>	<pre>measure[is](combine[and](find[red], transform[above](find[circle])))</pre>
four (four)	brown (brown)	green (green)	yes (yes)	yes (yes)

what is stuffed with contribushes wrapped in	where does the tabby cat watch a horse eating hay?	what material are the boxes made of?	is this a clock?	is a red shape blue?
<pre>plastic? describe[what](find[stuff])</pre>	describe[where](find[watch])	<pre>describe[material](find[box])</pre>	<pre>describe[is](find[clock])</pre>	<pre>measure[is](combine[and](find[red], find[blue]))</pre>
container (cup)	pen (barn)	leather (cardboard)	yes (no)	yes (no)

% of test set	size 4	size 5	size 6	All
% of test set	51	20	15	
Majority	64.4	62.5	61.7	63.0
VIS+LSTM	71.9	62.5	61.7	65.3
NMN	89.7	92.4	85.2	90.6
NMN (train size ≤ 5)	97.7	91.1	89.7	90.8

Testing On Natural Images

- Used the VQA dataset
 - \circ $\,$ More than 200,000 images from MSCOCO $\,$
 - Each paired with three questions and ten answers per question

Testing On Natural Images

- Used the VQA dataset
 - \circ $\,$ More than 200,000 images from MSCOCO $\,$
 - Each paired with three questions and ten answers per question
- Input layer to the NMN was the conv5 layer of VGG16
 - Additionally tried fine-tuning VGG16 to MSCOCO

Testing On Natural Images

- Used the VQA dataset
 - \circ $\,$ More than 200,000 images from MSCOCO $\,$
 - \circ $\,$ Each paired with three questions and ten answers per question $\,$
- Input layer to the NMN was the conv5 layer of VGG16
 - Additionally tried fine-tuning VGG16 to MSCOCO

	test-dev			test	
	Yes/No	Number	Other	All	All
LSTM	78.7	36.6	28.1	49.8	-
VIS+LSTM [3] ²	78.9	35.2	36.4	53.7	54.1
ATT+LSTM	80.6	36.4	42.0	57.2	-
NMN	70.7	36.8	39.2	54.8	24
NMN+LSTM	81.2	35.2	43.3	58.0	
NMN+LSTM+FT	81.2	38.0	44.0	58.6	58.7

Conclusions

- The parser has room for improvement
 - "Are these people most likely experiencing a work day?"
 - Should be: be(people, work)
 - Was:be(people, likely)
 - Hand inspection suggests 80-90% of questions parsed correctly for **simple** questions

Conclusions

- The parser has room for improvement
 - "Are these people most likely experiencing a work day?"
 - Should be: be(people, work)
 - Was:be(people, likely)
 - Hand inspection suggests 80-90% of questions parsed correctly for **simple** questions
- The system works
 - Points to a paradigm of "programs" built from neural networks

Limitations

- No need to do inference over architecture, weights separately.
- Still uses supervised learning.
- Types pretty restricted.