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Reasoning about intentions

Hard for robots

Hard for us

? for non-human primates
Important for observational learning



How to teach robot to do this?

e Assumption
o Human planning is optimal
o The agent (human) has perfect knowledge about the scene

e Key issue

o Infer the agent’s intent

o Represent the state of the scene
e Approach

o Co-infer intent and scene representation

o And-Or graph (AoG): Hierarchical, Compositional, Probabilistic

o Particle filtering-like algorithm: only tracking the most likely explanation
over time



Goal of the model
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Basic steps

e Define the posterior distribution over plans;

e Compute probabilities over the And-Or graph and specific
parse graphs;

e Simulate trajectories for a given parse graph;

e Compare simulated and observed trajectories;

e Update the distribution of plans.



Renovation

e Generative hierarchical, compositional, and probabilistic
And-Or graph.

e Infer long-term planning dependencies and
context-sensitive policies.

o Jointly infer object recognition, action detection, and
intent.



Temporal And-Or Graph (T-AoG)

® Grammar root production
node rules
S=<_S; V,; T, R P>
non-terminal  terminal probabilities on
e AND nodes: nodes nodes production rules

o Constrain their children to be executed in sequence (temporal).
o Production probability of 1

e Or Nodes:

o Associated with a probability w.



Parse Graph (pg)

e A valid sequence generated by the grammar
e Corresponding to one plan




Calculate posterior

P(pg | Xobs) o< P(pg) (Xobs ‘ pg)
o 2 P(pg)P pred | pg)P(Xobs | Xpred)

pled

o E P pg 6f(pg,X) (Xpred)P(XObs |Xpred)7
Xpred

)(X 4) - whether current Xplre 4 canbe
generated from the pg

f(pg, X): hierarchical planner
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Modeling Intent

e Represent intent as a temporal
And-Or graph (T-AoG)

®; x q(child(n)) If n is an OR-node
g(n) = < I1;g(children(n)) If n is an AND-node

T; If n is a terminal node
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Rapidly-Exploring Random Tree* (RRT™)

e Generate terminal nodes

e Finding minimal cost path from one
location to another:
o f(pg;B)— X .4
o B: background collision map

¢ P( Xobs | Xpred)




Dynamic Time Warping (DTW)
e Measure similarity between two temporal sequences varying in time or speed.
e Loss: the Euclidean distance between the observed trajectories and the

complete predicted/simulated trajectories, fed into a stochastic likelihood
function

e P(X obs| X pred): feed the loss into a stochastic likelihood function, and
larger loss leads to lower probability.



Stochastic Inference
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The worse a path/particle performs, the more
penalized the corresponding weight is by the
rule above.




Algorithm: Intent Prediction and Reweighting

Data: 3D Scene, Video Frames (V), Dictionary (A)
Result: @ (Parameterized T-AoG)

CollisionMap = SCENERECONSTRUCTION(V);

RRT* = RRT*Planner(CollisionMap);

P = Planner(A);

Particles = [];

for Frame v, in V do

ObservedTrajectory = ObjectTracking(vy.--- .v;);
PredictedPlan = Planner.sample(Particles);
PredictedTrajectories = RRT*.search(PredictedPlan);

Loss = DTW(ObservedTrajectory, E;E: t:s g:s {‘;‘} ;
PredictedTrajectory); ® Pour Water (C)
Planner.reweight(Loss); i LEES e
Particles = PredictedTrajectories; i !}Q;
end L

return Planner.weights



Intent Prediction (30 candidate Intents)

e FEuclidean Distance(ED): predict the nearest goal in the scene
e ED + Grammar: ED + prior weights for knowledge of actions
e 7 Accuracy decreases with more observation

TABLE 11
INTENT PREDICTION ACCURACY

% of observation O0% T 30% 10%
Euclhidean Distance (E.D.) 5% 0% 0% 0%
E.D. w/ Grammar Prior 13.1% 10.5% 6% 3%

Inverse Planning w/o Hierarchy 158% 132% 105% 10.5%
Ours 289% (133% 184% 15.8%




Action Recognition

Input: -3 sec ~ +3 sec surrounding
the action time

ICCV13: Use wavelet features
representing action sequences
together with temporal logic

describing the actions relations

“Better at recognizing the action
when an object is involved”

TABLE 11
ACTION RECOGNITION ACCURACY

SVM  ICCVI13[36] Ours

walk 88% 98 % 91%
stand_up  68% 04% 92%
sit.down  65% 02% 92%
grasp 43% 64% 59%
put 25% 44% 53%
fetch 33% 54% 83%
touch 35% 41% 54%
drink 70% 91% 91%
call 65% 894% 94%%
eal 22% 54% 13%




TABLE IV
OBJECT TRACKING ACCURACY

ObJeCt TraCklng ICCVII[I5] ICCVI3[(30] Oun

No Occlusion 34% T2% T4%
With Occlusion = = 359%
All Frames = = 05%
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Conclusions

e To some extent realizing inference of human hierarchical plans through
robotic imagination with input of observed actions and rationality assumption.

e Advantage: Unlimited by the hierarchical depth of the plan or the time length

e Disadvantage: Planning dictionary should be provided a-priori : learn weights
for different plans with the tree structure given



Discussion

J
3
3

This paper: Model human intent through observed motion patterns

How to relax the rationality hypothesis

What if make use of the speed variation in movement? Or other forms of
information can be integrated?

Further improvement might be gained through brain imaging data (e.g. motor
area) to infer human intents?



