Inferring Human Intent from Video by Sampling Hierarchical Plans

Shaorong Yan, Weilun Ding

Reasoning about intentions

- Hard for robots
- Hard for us
- ? for non-human primates
- Important for observational learning

How to teach robot to do this?

• Assumption

- Human planning is optimal
- The agent (human) has perfect knowledge about the scene

• Key issue

- Infer the agent's intent
- Represent the state of the scene

• Approach

- Co-infer intent and scene representation
- And-Or graph (AoG): Hierarchical, Compositional, Probabilistic
- Particle filtering-like algorithm: only tracking the most likely explanation over time

Goal of the model

Basic steps

- Define the posterior distribution over plans;
- Compute probabilities over the And-Or graph and specific parse graphs;
- Simulate trajectories for a given parse graph;
- Compare simulated and observed trajectories;
- Update the distribution of plans.

Renovation

- Generative hierarchical, compositional, and probabilistic And-Or graph.
- Infer long-term planning dependencies and context-sensitive policies.
- Jointly infer object recognition, action detection, and intent.

Temporal And-Or Graph (T-AoG)

- Grammar root node production rules
 S = < S; V_n; T; R; P_i>
 non-terminal terminal probabilities on production rules
 - Constrain their children to be executed in sequence (temporal).
 - Production probability of 1
- Or Nodes:
 - Associated with a probability w_i

Parse Graph (pg)

- A valid sequence generated by the grammar
- Corresponding to one plan

Calculate posterior

$$P(pg \mid X_{obs}) \propto P(pg)P(X_{obs} \mid pg)$$

$$\propto \sum_{X_{pred}} P(pg)P(X_{pred} \mid pg)P(X_{obs} \mid X_{pred})$$

$$\propto \sum_{X_{pred}} P(pg)\delta_{f(pg,X)}(X_{pred})P(X_{obs} \mid X_{pred}),$$

$$pg^{\star} = \operatorname*{arg\,max}_{pg} P(pg \mid X_{obs})$$

Modeling Intent

Represent intent as a temporal And-Or graph (T-AoG)

 $q(n) = \begin{cases} \omega_i \times q(\operatorname{child}(n)) & \text{If } n \text{ is an OR-node} \\ \prod_i q(\operatorname{children}(n)) & \text{If } n \text{ is an AND-node} \\ T & \text{If } n \text{ is a terminal node} \end{cases}$

If *n* is a terminal node

Rapidly-Exploring Random Tree* (RRT*)

- Generate terminal nodes
- Finding minimal cost path from one location to another:
 - \circ f(pg ; B) \rightarrow X_{pred}
 - B: background collision map
- P(X_{obs} | X_{pred})

Dynamic Time Warping (DTW)

• Measure similarity between two temporal sequences varying in time or speed.

• Loss: the Euclidean distance between the observed trajectories and the complete predicted/simulated trajectories, fed into a stochastic likelihood function

• P(X_obs | X_pred): feed the loss into a stochastic likelihood function, and larger loss leads to lower probability.

Stochastic Inference

$$\lim_{N\to\infty}\frac{\#(O_i^J)}{\#(O^j)}=\omega_i$$

$$\omega_i^{t+1} \propto \frac{\#(O_i^j)}{\#(O^j)} \times \prod_{k \in A} P_{\omega_i^t}(X_{\text{obs}} \mid X_{\text{pred}}^k).$$

The worse a path/particle performs, the more penalized the corresponding weight is by the rule above.

Algorithm: Intent Prediction and Reweighting

Data: 3D Scene, Video Frames (V), Dictionary (Δ) **Result:** ω (Parameterized T-AoG) CollisionMap = SCENERECONSTRUCTION(V);RRT* = RRT*Planner(CollisionMap); $P = Planner(\Delta);$ Particles = []; for Frame v_t in V do ObservedTrajectory = ObjectTracking(v_1, \dots, v_t); PredictedPlan = Planner.sample(Particles); PredictedTrajectories = RRT*.search(PredictedPlan); Loss = DTW(ObservedTrajectory, PredictedTrajectory); Planner.reweight(Loss); Particles = PredictedTrajectories; end

return Planner.weights

Intent Prediction (30 candidate Intents)

- Euclidean Distance(ED): predict the nearest goal in the scene
- ED + Grammar: ED + prior weights for knowledge of actions
- ? Accuracy decreases with more observation

TABLE II

INTENT PREDICTION ACCURACY

% of observation	90%	70%	30%	10%
Euclidean Distance (E.D.)	5%	0%	0%	0%
E.D. w/ Grammar Prior	13.1%	10.5%	6%	3%
Inverse Planning w/o Hierarchy	15.8%	13.2%	10.5%	10.5%
Ours	28.9%	13.3%	18.4%	15.8%

Action Recognition

 Input: -3 sec ~ +3 sec surrounding the action time

 ICCV13: Use wavelet features representing action sequences together with temporal logic describing the actions relations

TABLE III ACTION RECOGNITION ACCURACY

ICCV13 [36] SVM Ours 91% walk 88% 98% 68% 92% stand_up 94% sit down 65% 92% 92% 43% 64% 59% grasp 25% 44% 53% put 33% 54% 83% fetch 35% 41% 54% touch drink 91% 91% 70% call 65% 89% 94% 22% 73% 54% eat

 "Better at recognizing the action when an object is involved"

TABLE IV

OBJECT TRACKING ACCURACY

-

ICCV13[30]

72%

-

-

Ours

74%

35%

65%

Object Tracking	ICCV11[15]		
e	No Occlusion	34%	
	With Occlusion	-	

(a) dispersor 3 printer 1 dispersor 3 chair 43 chair 43	(b) 		
(d) book Teap	ot_yellow	disconcer	micorware /hiteboard
monitor_3 monitor_2 coffeemaker in computer configuration computer	nonitor_1 coffeemate monitor_4 uter phone phone mug blue ch	teapot_white printer	chair_5 chair_6 mug_coke
	chair_3		teapot_black

All Frames

Conclusions

• To some extent realizing inference of human hierarchical plans through robotic imagination with input of observed actions and rationality assumption.

• Advantage: Unlimited by the hierarchical depth of the plan or the time length

• Disadvantage: Planning dictionary should be provided a-priori : learn weights for different plans with the tree structure given

Discussion

- This paper: Model human intent through observed motion patterns
- □ How to relax the rationality hypothesis
- What if make use of the speed variation in movement? Or other forms of information can be integrated?
- Further improvement might be gained through brain imaging data (e.g. motor area) to infer human intents?